These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 7442870)

  • 1. [Changes in the excitability of central endings of the superior laryngeal nerve following activation of the respiratory center].
    Baev KV; Shapovalov AV; Preobrazhenskiĭ NN; Esipenko VB
    Neirofiziologiia; 1980; 12(6):653-5. PubMed ID: 7442870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Modulation of reflex discharges in the respiratory nerves of the cat upon stimulation of superior laryngeal afferents].
    D'iachenko IuE; Preobrazhenskiĭ NN
    Neirofiziologiia; 1984; 16(4):553-7. PubMed ID: 6493405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of bulbospinal and laryngeal respiratory neurons to hypercapnia and hypoxia.
    St John WM; Bianchi AL
    J Appl Physiol (1985); 1985 Oct; 59(4):1201-7. PubMed ID: 4055598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biphasic effect of ethyl alcohol on short-term potentiation of the respiratory activity in the rabbit.
    Budzińska K
    J Physiol Pharmacol; 2005 Sep; 56 Suppl 4():31-8. PubMed ID: 16204774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Functional differentiation of afferents of the superior laryngeal nerve in the cat].
    D'iachenko IuE; Preobrazhenskiĭ NN
    Neirofiziologiia; 1984; 16(6):777-83. PubMed ID: 6521788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power spectral analysis of inspiratory nerve activity in the decerebrate cat.
    Richardson CA; Mitchell RA
    Brain Res; 1982 Feb; 233(2):317-36. PubMed ID: 6800563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phrenic output changes due to progressive airway denervation in rabbits.
    Kamosińska B; Szereda-Przestaszewska M
    Bull Eur Physiopathol Respir; 1987; 23(2):155-61. PubMed ID: 3111571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Patterns of discharge of inspiratory laryngeal motor neurons under various experimental conditions].
    Barillot JC; Dussardier M
    J Physiol (Paris); 1973; 66(5):593-629. PubMed ID: 4367767
    [No Abstract]   [Full Text] [Related]  

  • 9. Intracellular potentials and discharge patterns of expiratory neurons in the caudal ventral respiratory group: influence of phasic pulmonary afferent input.
    See WR; Cohen MI; Barnhardt R; Christakos CN
    Brain Res; 1987 Sep; 421(1-2):363-6. PubMed ID: 3690279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the excitability of sinus nerve afferent terminals.
    Jordan D; Spyer KM
    J Physiol; 1979 Dec; 297(0):123-34. PubMed ID: 536906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the sites of antitussive action of d-3-methyl-N-methylmorphinan (AT-17).
    Kasé Y; Kito G; Miyata T; Takahama K; Uno T
    Arzneimittelforschung; 1976; 26(3):361-6. PubMed ID: 989327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proceedings: Effects of morphine and narcotic antagonists on orthodromic response of bulbar respiratory neurons to afferent stimulation of vagus and superior laryngeal nerves.
    Hukuhara T; Sakai Y
    Jpn J Pharmacol; 1974; 24(0):s:107. PubMed ID: 4545979
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional reconnections established by central respiratory neurons regenerating axons into a nerve graft bridging the respiratory centers to the cervical spinal cord.
    Gauthier P; Réga P; Lammari-Barreault N; Polentes J
    J Neurosci Res; 2002 Oct; 70(1):65-81. PubMed ID: 12237865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.
    Solomon IC; Chon KH; Rodriguez MN
    J Neurophysiol; 2003 Jan; 89(1):135-49. PubMed ID: 12522166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic origin of the respiratory-modulated activity of laryngeal motoneurons.
    Ono K; Shiba K; Nakazawa K; Shimoyama I
    Neuroscience; 2006 Jul; 140(3):1079-88. PubMed ID: 16650611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory responses to ionotropic glutamate receptor antagonists in the ventral respiratory group of the rabbit.
    Bongianni F; Mutolo D; Carfì M; Pantaleo T
    Pflugers Arch; 2002 Aug; 444(5):602-9. PubMed ID: 12194013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in antidromic latencies of medullary respiratory neurons in hypercapnia and hypoxia.
    Bianchi AL; St John WM
    J Appl Physiol (1985); 1985 Oct; 59(4):1208-13. PubMed ID: 4055599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central nervous mechanisms in the generation of the pattern of breathing.
    Pantaleo T; Bongianni F; Mutolo D
    Arch Ital Biol; 2005 Sep; 143(3-4):207-14. PubMed ID: 16097497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Possible participation of endogenous bursting neurons in central respiratory rhythm generation].
    Kitano S
    Masui; 1986 Nov; 35(11):1619-32. PubMed ID: 3820553
    [No Abstract]   [Full Text] [Related]  

  • 20. [Changes in the intensity of integral afferent inflow from limb receptors and the level of polarization of primary afferent endings in the decerebrate cat during scratching].
    Baev KV; Esipenko VB
    Neirofiziologiia; 1988; 20(1):49-57. PubMed ID: 3380211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.