These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7443821)

  • 1. Hyperreactivity following temporary chemical lesions in the region ventral to the anterior septum but not in the anterior olfactory nucleus, the lateral olfactory tract, or the olfactory bulb.
    Albert DJ
    Physiol Behav; 1980 Sep; 25(3):481-3. PubMed ID: 7443821
    [No Abstract]   [Full Text] [Related]  

  • 2. Structures posterior to the olfactory bulb which are responsible for the mouse killing and hyperreactivity following lesions of the olfactory bulb.
    Albert DJ; Nanji N; Chew GL
    Physiol Behav; 1981 Mar; 26(3):395-9. PubMed ID: 7195592
    [No Abstract]   [Full Text] [Related]  

  • 3. Neural systems and the inhibitory modulation of agonistic behavior: a comparison of mammalian species.
    Albert DJ; Walsh ML
    Neurosci Biobehav Rev; 1984; 8(1):5-24. PubMed ID: 6374531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective retrograde transport of tritiated D-aspartate from the olfactory bulb to the anterior olfactory nucleus, pyriform cortex and nucleus of the lateral olfactory tract in the rat.
    Watanabe K; Kawana E
    Brain Res; 1984 Mar; 296(1):148-51. PubMed ID: 6201233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of agonistic behavior by the dual olfactory system in male mice.
    Bean NJ
    Physiol Behav; 1982 Sep; 29(3):433-7. PubMed ID: 6891074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transection of the lateral olfactory tract does not produce anosmia.
    Slotnick BM; Berman EJ
    Brain Res Bull; 1980; 5(2):141-5. PubMed ID: 7378853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal effects of discrete lesions in the olfactory and limbic systems on open-field behavior and dyadic encounters in male hooded rats.
    Baumbach HD; Sieck MH
    Physiol Behav; 1977 Apr; 18(4):617-37. PubMed ID: 561415
    [No Abstract]   [Full Text] [Related]  

  • 8. Olfactory input to the lateral hypothalamus of the old world monkey.
    Tazawa Y; Onoda N; Takagi SF
    Neurosci Res; 1987 Jun; 4(5):357-75. PubMed ID: 3670744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anesthetic-dependent field potential interactions in the olfactory bulb.
    Stewart WB; Scott JW
    Brain Res; 1976 Feb; 103(3):487-99. PubMed ID: 1252939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of the interruption of the connections of a simple cortical system (olfactory bulb) with the rest of the brain: comparative study in Chaetophractus villosus (Tatou) and Lagostomus maximus (Viscache)].
    Scaravilli AM; Affanni JM; Panizza JS; Samartino LG
    C R Seances Soc Biol Fil; 1974; 168(8-9):1146. PubMed ID: 4282331
    [No Abstract]   [Full Text] [Related]  

  • 11. The inhibitory modulation of agonistic behavior in the rat brain: a review.
    Albert DJ; Walsh ML
    Neurosci Biobehav Rev; 1982; 6(2):125-43. PubMed ID: 7048154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the medial olfactory pathways in olfaction: behavioral and electrophysiological data.
    Cattarelli M
    Behav Brain Res; 1982 Dec; 6(4):339-64. PubMed ID: 6293520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural basis of olfactory memory in the context of pregnancy block.
    Kaba H; Rosser A; Keverne B
    Neuroscience; 1989; 32(3):657-62. PubMed ID: 2601837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in spontaneous, odor modulated and shock induced behavior patterns following discrete olfactory system lesions.
    Sieck MH; Baumbach HD; Gordon BL; Turner JF
    Physiol Behav; 1974 Sep; 13(3):427-39. PubMed ID: 4438457
    [No Abstract]   [Full Text] [Related]  

  • 15. Steady-state centrifugal input via the lateral olfactory tract modulates spontaneous activity in the rat main olfactory bulb.
    Ford NC; Griff ER
    Neuroscience; 2017 Apr; 348():165-179. PubMed ID: 28215749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascending olfactory information and centrifugal influxes contributing to a nutritional modulation of the rat mitral cell responses.
    Pager J
    Brain Res; 1978 Jan; 140(2):251-69. PubMed ID: 626891
    [No Abstract]   [Full Text] [Related]  

  • 17. Electrophysiological studies of centrifugal and centripetal connections of the anterior olfactory nucleus.
    Daval G; Leveteau J
    Brain Res; 1974 Oct; 78(3):395-410. PubMed ID: 4424941
    [No Abstract]   [Full Text] [Related]  

  • 18. Vomeronasal and olfactory pathways to the amygdala controlling male hamster sexual behavior: autoradiographic and behavioral analyses.
    Lehman MN; Winans SS
    Brain Res; 1982 May; 240(1):27-41. PubMed ID: 7093718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal projection of anterior olfactory nuclear neurons to the olfactory bulb bilaterally.
    Mori K; Satou M; Takagi SF
    Exp Neurol; 1979 May; 64(2):295-305. PubMed ID: 428507
    [No Abstract]   [Full Text] [Related]  

  • 20. [Multiunit activity from various levels of the olfactory pathways in unrestrained rats : Correlated responses from the olfactory bulb and basal telencephalic areas. (author's transl)].
    Pager J
    J Physiol (Paris); 1981 Sep; 77(6-7):727-39. PubMed ID: 7288665
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.