These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 744429)

  • 1. Chloride-independent transport of pyruvate and lactate across the erythrocyte membrane [proceedings].
    Leeks DR; Halestrap AP
    Biochem Soc Trans; 1978; 6(6):1363-6. PubMed ID: 744429
    [No Abstract]   [Full Text] [Related]  

  • 2. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier.
    Halestrap AP
    Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate transport into inside-out vesicles isolated from human erythrocyte membranes.
    Rice WR; Steck TL
    Biochim Biophys Acta; 1977 Jul; 468(2):305-17. PubMed ID: 195608
    [No Abstract]   [Full Text] [Related]  

  • 4. Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes.
    Deuticke B; Rickert I; Beyer E
    Biochim Biophys Acta; 1978 Feb; 507(1):137-55. PubMed ID: 23829
    [No Abstract]   [Full Text] [Related]  

  • 5. Red cell metabolism affects lactate and pyruvate partition across the plasma membrane.
    Ninfali P; Piatti E; Palma F; Accorsi A; Fornaini G
    Arch Int Physiol Biochim; 1983 Dec; 91(5):417-22. PubMed ID: 6204611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl-4,4'-diaminostilbene-2,2'-disulpho nat e (TBenzDS).
    Poole RC; Cranmer SL; Holdup DW; Halestrap AP
    Biochim Biophys Acta; 1991 Nov; 1070(1):69-76. PubMed ID: 1751540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane.
    Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H
    Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride-activated passive potassium transport in human erythrocytes.
    Dunham PB; Stewart GW; Ellory JC
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1711-5. PubMed ID: 6929518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of the L-lactate carrier from rat and rabbit erythrocyte plasma membranes.
    Poole RC; Halestrap AP
    Biochem J; 1988 Sep; 254(2):385-90. PubMed ID: 3178766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride mediated inhibition of the phosphate and the sulfate transport by dipyridamole in human erythrocyte ghosts.
    Renner M; Dietl M; Schnell KF
    FEBS Lett; 1988 Sep; 238(1):77-81. PubMed ID: 3169258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of 3-bromopyruvate across the human erythrocyte membrane.
    Sadowska-Bartosz I; Soszyński M; Ułaszewski S; Ko Y; Bartosz G
    Cell Mol Biol Lett; 2014 Jun; 19(2):201-14. PubMed ID: 24715475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and regulation of lactate, pyruvate and ketone body transport across the plasma membrane of mammalian cells and their metabolic consequences.
    Halestrap AP; Poole RC; Cranmer SL
    Biochem Soc Trans; 1990 Dec; 18(6):1132-5. PubMed ID: 2088823
    [No Abstract]   [Full Text] [Related]  

  • 13. The relation between the membrane cholesterol content and anion exchange in the erythrocytes of patients with cholestasis.
    Jackson P; Morgan DB
    Biochim Biophys Acta; 1982 Dec; 693(1):99-104. PubMed ID: 7150598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ion concentration gradients on glycine transport and accumulation.
    Warren LC; Wheeler KP
    Biochem Soc Trans; 1995 May; 23(2):222S. PubMed ID: 7672241
    [No Abstract]   [Full Text] [Related]  

  • 15. Pyruvate flux into resealed ghosts from human erythrocytes.
    Rice WR; Steck TL
    Biochim Biophys Acta; 1976 Apr; 433(1):39-53. PubMed ID: 4147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion transport in red blood cells and arginine specific reagents. (1). Effect of chloride and sulfate ions on phenylglyoxal sensitive sites in the red blood cell membrane.
    Zaki L
    Biochem Biophys Res Commun; 1983 Jan; 110(2):616-24. PubMed ID: 6838541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicarbonate/chloride transport kinetics at 37 degree C and its relationship to membrane lipids in mammalian erythrocytes.
    Lu YB; Chow EI
    Biochim Biophys Acta; 1982 Aug; 689(3):485-9. PubMed ID: 6812628
    [No Abstract]   [Full Text] [Related]  

  • 18. Chloride-bicarbonate exchange in human red cells measured using a stopped flow apparatus.
    Lambert A; Lowe AG
    J Physiol; 1980 Sep; 306():431-43. PubMed ID: 7463368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloride transport in human erythrocytes and ghosts: a quantitative comparison.
    Funder J; Wieth JO
    J Physiol; 1976 Nov; 262(3):679-98. PubMed ID: 13204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive potassium transport in human red cells.
    Ellory JC; Hall AC; Amess JA
    Biomed Biochim Acta; 1987; 46(2-3):S31-5. PubMed ID: 3593311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.