BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7444943)

  • 1. Shape changes of GSH-treated erythrocytes during complement-induced hemolysis.
    Matsumoto N; Hiroshige Y
    Tohoku J Exp Med; 1980 Oct; 132(2):199-205. PubMed ID: 7444943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolytic properties of Ca(2+)-treated human erythrocytes under hydrostatic pressure.
    Harano T; Yamaguchi T; Kimoto E
    J Biochem; 1994 Oct; 116(4):773-7. PubMed ID: 7883751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape and volume changes in rat erythrocytes induced by surface-active alkyltrimethylammonium salts and sodium dodecyl sulphate.
    Isomaa B; Paatero G
    Biochim Biophys Acta; 1981 Oct; 647(2):211-22. PubMed ID: 7295726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serum-red cell interactions at low ionic strength: erythrocyte complement coating and hemolysis of paroxysmal nocturnal hemoglobinuria cells.
    Jenkins DE; Hartmann RC; Kerns AL
    J Clin Invest; 1967 May; 46(5):753-61. PubMed ID: 6025481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical correlates of lysophosphatidylcholine- and ethanol-mediated shape transformation and hemolysis of human erythrocytes. Membrane viscoelasticity and NMR measurement.
    Chi LM; Wu WG; Sung KL; Chien S
    Biochim Biophys Acta; 1990 Aug; 1027(2):163-71. PubMed ID: 2397228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of dilauroylglycerophosphocholine with erythrocytes: pre-hemolytic events and hemolysis.
    Tanaka Y; Inoue K; Nojima S
    Biochim Biophys Acta; 1980 Jul; 600(1):126-39. PubMed ID: 7397164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro hemolysis of rat erythrocytes by selenium compounds.
    Hu ML; Spallholz JE
    Biochem Pharmacol; 1983 Mar; 32(6):957-61. PubMed ID: 6838660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of copper on intact swine erythrocytes.
    Asano R; Hokari S
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1987; 86(2):443-7. PubMed ID: 2882948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complement-mediated aggregation of sensitized erythrocytes.
    Gancevici GG
    Arch Roum Pathol Exp Microbiol; 1985; 44(4):363-6. PubMed ID: 3838047
    [No Abstract]   [Full Text] [Related]  

  • 10. Activation of the complement attack mechanism in the fluid phase and its control by C567-INH: lysis of normal erythrocytes initiated by zymosan, endotoxin, and immune complexes.
    Lint TF; Behrends CL; Baker PJ; Gewurz H
    J Immunol; 1976 Nov; 117(5 Pt 1):1440-6. PubMed ID: 1002985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-induced shape transformation of carrier erythrocytes.
    Sprandel U
    Res Exp Med (Berl); 1990; 190(4):267-75. PubMed ID: 2218076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human erythrocyte hemolysis induced by selenium and tellurium compounds increased by GSH or glucose: a possible involvement of reactive oxygen species.
    Schiar VP; Dos Santos DB; Paixão MW; Nogueira CW; Rocha JB; Zeni G
    Chem Biol Interact; 2009 Jan; 177(1):28-33. PubMed ID: 18983990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discocyte--echinocyte reversibility in blood stored in CPD over a period of 56 days.
    Laczkó J; Feó CJ; Phillips W
    Transfusion; 1979; 19(4):379-88. PubMed ID: 473341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemin-mediated hemolysis in erythrocytes: effects of ascorbic acid and glutathione.
    Li SD; Su YD; Li M; Zou CG
    Acta Biochim Biophys Sin (Shanghai); 2006 Jan; 38(1):63-9. PubMed ID: 16395529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes.
    Wang J; Sun B; Cao Y; Tian Y
    Food Chem Toxicol; 2009 Jul; 47(7):1591-9. PubMed ID: 19371769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemolysis of normal human erythrocytes by autologous serum complement.
    Kitamura H; Nagano A; Kitano E
    Int Arch Allergy Immunol; 1993; 100(3):209-14. PubMed ID: 8453307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hemolytic activity of citral--II. Glutathione depletion in citral treated erythrocytes.
    Segal R; Milo-Goldzweig I
    Biochem Pharmacol; 1985 Dec; 34(23):4117-9. PubMed ID: 4062979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminating the hemolytic risk of blood type A plasmas using the complement hemolysis using human erythrocytes (CHUHE) assay.
    Cunnion KM; Hair PS; Krishna NK; Sass MA; Enos CW; Whitley PH; Maes LY; Goldberg CL
    Transfusion; 2017 Mar; 57(3):517-524. PubMed ID: 28000304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysis of human erythrocytes due to activation of the alternate complement pathway by nephritic factor (C3NeF).
    Arroyave CM; Vallota EH; Müller-Eberhard HJ
    J Immunol; 1974 Sep; 113(3):764-8. PubMed ID: 4547248
    [No Abstract]   [Full Text] [Related]  

  • 20. G6PD-deficiency infectious haemolysis: a complement dependent innocent bystander phenomenon.
    Kasper ML; Miller WJ; Jacob HS
    Br J Haematol; 1986 May; 63(1):85-91. PubMed ID: 3707864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.