These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 7447864)
1. Retinal and extraretinal entrainment action spectra for the activity rhythms of the lake chub, Couesius plumbeus. Kavaliers M Behav Neural Biol; 1980 Sep; 30(1):56-67. PubMed ID: 7447864 [No Abstract] [Full Text] [Related]
2. Pineal control of ultradian rhythms and short-term activity in a cyprinid fish, the lake chub, Couesius plumbeus. Kavaliers M Behav Neural Biol; 1980 Jun; 29(2):224-35. PubMed ID: 7190008 [No Abstract] [Full Text] [Related]
4. Involvement of retinal and extraretinal photoreceptors in the mediation of nocturnal locomotor activity rhythms in the catfish, Silurus asotus. Tabata M; Minh-Nyo M; Oguri M Exp Biol; 1988; 47(4):219-25. PubMed ID: 3220123 [TBL] [Abstract][Full Text] [Related]
5. Neurobiological aspects of extraretinal photoreceptive systems: structure and function. Hartwig HG; Oksche A Experientia; 1982 Sep; 38(9):991-6. PubMed ID: 6751862 [No Abstract] [Full Text] [Related]
6. Extraretinal photocontrol of reproductive responses of Leghorn hens to photoperiods of different length and spectrum. Harrison PC Poult Sci; 1972 Nov; 51(6):2060-4. PubMed ID: 4660987 [No Abstract] [Full Text] [Related]
7. Neural organization and cellular mechanisms of circadian pacemakers. Jacklet JW Int Rev Cytol; 1984; 89():251-94. PubMed ID: 6088416 [No Abstract] [Full Text] [Related]
8. The pineal gland does not control rod outer segment shedding and phagocytosis in the rat retina and pigment epithelium. Tamai M; Teirstein P; Goldman A; O'Brien P; Chader G Invest Ophthalmol Vis Sci; 1978 Jun; 17(6):558-62. PubMed ID: 566259 [TBL] [Abstract][Full Text] [Related]
9. Structures and molecules involved in generation and regulation of biological rhythms in vertebrates and invertebrates. Binkley S Experientia; 1993 Aug; 49(8):648-53. PubMed ID: 8359271 [TBL] [Abstract][Full Text] [Related]
10. Studies on the hormonal control of circadian outer segment disc shedding in the rat retina. LaVail MM; Ward PA Invest Ophthalmol Vis Sci; 1978 Dec; 17(12):1189-3. PubMed ID: 721391 [TBL] [Abstract][Full Text] [Related]
11. The pineal gland: photoreception and coupling of behavioral, metabolic, and cardiovascular circadian outputs. Warren WS; Cassone VM J Biol Rhythms; 1995 Mar; 10(1):64-79. PubMed ID: 7632982 [TBL] [Abstract][Full Text] [Related]
12. Rhythms, reproduction, and photoreception. Menaker M Biol Reprod; 1971 Jun; 4(3):295-308. PubMed ID: 4941447 [No Abstract] [Full Text] [Related]
13. The effects of the pineal gland on light-induced retinal photoreceptor damage. Rudeen PK; O'Steen WK Exp Eye Res; 1979 Jan; 28(1):37-44. PubMed ID: 446551 [No Abstract] [Full Text] [Related]
14. A cyclic GMP-activated channel in dissociated cells of the chick pineal gland. Dryer SE; Henderson D Nature; 1991 Oct; 353(6346):756-8. PubMed ID: 1719422 [TBL] [Abstract][Full Text] [Related]
15. Nonvisual photoreceptors of the deep brain, pineal organs and retina. Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759 [TBL] [Abstract][Full Text] [Related]
16. Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness. Valdez DJ; Nieto PS; Díaz NM; Garbarino-Pico E; Guido ME FASEB J; 2013 Jul; 27(7):2702-12. PubMed ID: 23585397 [TBL] [Abstract][Full Text] [Related]