These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7448178)

  • 1. Hemocyanin from the Australian freshwater crayfish Cherax destructor. Oxygen binding studies of major components.
    Jeffrey PD; Treacy GB
    Biochemistry; 1980 Nov; 19(23):5428-33. PubMed ID: 7448178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocyanin from the Australian freshwater crayfish Cherax destructor. Electron microscopy of native and reassembled molecules.
    Jeffrey PD
    Biochemistry; 1979 Jun; 18(12):2508-13. PubMed ID: 444473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemocyanin from the Australian freshwater crayfish Cherax destructor. Characterization of a dimeric subunit and its involvement in the formation of the 25S component.
    Jeffrey PD; Shaw DC; Treacy GB
    Biochemistry; 1978 Jul; 17(15):3078-84. PubMed ID: 698187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemocyanin from the Australian freshwater crayfish Cherax destructor. Subunit heterogeneity.
    Murray AC; Jeffrey PD
    Biochemistry; 1974 Aug; 13(18):3667-71. PubMed ID: 4852240
    [No Abstract]   [Full Text] [Related]  

  • 5. Hemocyanin from the Australian freshwater crayfish Cherax destructor. Studies of two different monomers and their participation in the formation of multiple hexamers.
    Jeffrey PD; Shaw DC; Treacy GB
    Biochemistry; 1976 Dec; 15(25):5527-33. PubMed ID: 999826
    [No Abstract]   [Full Text] [Related]  

  • 6. Allosteric modulation of Callinectes sapidus hemocyanin by binding of L-lactate.
    Johnson BA; Bonaventura C; Bonaventura J
    Biochemistry; 1984 Feb; 23(5):872-8. PubMed ID: 25856833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen binding properties of stripped (calcium ion and magnesium ion free) hemocyanin from the scorpion Leirus quinquestriatus.
    Klarman A; Daniel E
    Biochemistry; 1980 Nov; 19(23):5176-80. PubMed ID: 7448162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of oligomeric interactions in the cooperativity of crayfish hemocyanin.
    Makino N; Ohnaka H
    Biochim Biophys Acta; 1993 Mar; 1162(3):237-45. PubMed ID: 8457587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular heterogeneity of the hemocyanin isolated from the king crab Paralithodes camtschaticae.
    Molon A; Di Muro P; Bubacco L; Vasilyev V; Salvato B; Beltramini M; Conze W; Hellmann N; Decker H
    Eur J Biochem; 2000 Dec; 267(24):7046-57. PubMed ID: 11106415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of temperature acclimation on crayfish hemocyanin oxygen binding.
    Rutledge PS
    Am J Physiol; 1981 Jan; 240(1):R93-8. PubMed ID: 7457633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal ion interactions with Callinectes sapidus hemocyanin: structural and functional changes induced by a variety of heavy metal ions.
    Brouwer M; Bonaventura C; Bonaventura J
    Biochemistry; 1982 May; 21(10):2529-38. PubMed ID: 7093201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemocyanins in spiders. XXII. Range of allosteric interaction in a four-hexamer hemocyanin. Co-operativity and Bohr effect in dissociation intermediates.
    Savel-Niemann A; Markl J; Linzen B
    J Mol Biol; 1988 Nov; 204(2):385-95. PubMed ID: 3221391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric control in Limulus polyphemus hemocyanin: functional relevance of interactions between hexamers.
    Brouwer M; Serigstad B
    Biochemistry; 1989 Oct; 28(22):8819-27. PubMed ID: 2605223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus L.
    Sullivan B; Bonaventura J; Bonaventura C
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2558-62. PubMed ID: 4210212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly and calcium-induced cooperativity of Limulus IV hemocyanin: a model system for analysis of structure-function relationships in the absence of subunit heterogeneity.
    Brenowitz M; Bonaventura C; Bonaventura J
    Biochemistry; 1983 Sep; 22(20):4707-13. PubMed ID: 6626525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quaternary structure and functional properties of Penaeus monodon hemocyanin.
    Beltramini M; Colangelo N; Giomi F; Bubacco L; Di Muro P; Hellmann N; Jaenicke E; Decker H
    FEBS J; 2005 Apr; 272(8):2060-75. PubMed ID: 15819896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric oxygen-binding properties of reassembled tarantula (Eurypelma californicum) hemocyanin with incorporated apo- or met-subunits.
    Decker H; Savel-Niemann A; Körschenhausen D; Eckerskorn E; Markl J
    Biol Chem Hoppe Seyler; 1989 Jun; 370(6):511-23. PubMed ID: 2673295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of the equilibration of O2 with Panulirus interruptus hemocyanin subunits a, b and c.
    Andrew CR; McKillop KP; Sykes AG
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):105-14. PubMed ID: 8448173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive cooperativity in binding carbon monoxide to hemocyanin.
    Decker H; Richey B; Gill SJ
    Biochem Biophys Res Commun; 1983 Oct; 116(1):291-6. PubMed ID: 6639663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The subunit structure of the hemocyanin from the crayfish Jasus edwardsii.
    Ellerton HD; Collins LB; Gale JS; Yung AY
    Biophys Chem; 1976 Dec; 6(1):47-57. PubMed ID: 13875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.