These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 744826)

  • 1. Generating vocal tract shapes from formant frequencies.
    Ladefoged P; Harshman R; Goldstein L; Rice L
    J Acoust Soc Am; 1978 Oct; 64(4):1027-35. PubMed ID: 744826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear degrees of freedom in speech production: analysis of cineradio- and labio-film data and articulatory-acoustic modeling.
    Beautemps D; Badin P; Bailly G
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2165-80. PubMed ID: 11386568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis.
    McGowan RS; Cushing S
    J Acoust Soc Am; 1999 Aug; 106(2):1090-105. PubMed ID: 10462814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting midsagittal pharynx shape from tongue position during vowel production.
    Whalen DH; Kang AM; Magen HS; Fulbright RK; Gore JC
    J Speech Lang Hear Res; 1999 Jun; 42(3):592-603. PubMed ID: 10391625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in production of the vowels /i/ and /a/.
    Perkell JS; Nelson WL
    J Acoust Soc Am; 1985 May; 77(5):1889-95. PubMed ID: 3998298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of acoustic interspeaker variability based on the concept of formant-cavity affiliation.
    Apostol L; Perrier P; Bailly G
    J Acoust Soc Am; 2004 Jan; 115(1):337-51. PubMed ID: 14759026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting midsagittal pharyngeal dimensions from measures of anterior tongue position in Swedish vowels: statistical considerations.
    Jackson MT; McGowan RS
    J Acoust Soc Am; 2008 Jan; 123(1):336-46. PubMed ID: 18177163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a curved vocal tract with grid-generated tongue profile on low-order formants.
    Milenkovic PH; Yaddanapudi S; Vorperian HK; Kent RD
    J Acoust Soc Am; 2010 Feb; 127(2):1002-13. PubMed ID: 20136222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of bite-block vowels: acoustic equivalence by selective compensation.
    Gay T; Lindblom B; Lubker J
    J Acoust Soc Am; 1981 Mar; 69(3):802-10. PubMed ID: 7240561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two cross-linguistic factors underlying tongue shapes for vowels.
    Nix DA; Papcun G; Hogden J; Zlokarnik I
    J Acoust Soc Am; 1996 Jun; 99(6):3707-17. PubMed ID: 8655802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tongue-palate contact during bilabials in normal speech.
    Gibbon FE; Lee A; Yuen I
    Cleft Palate Craniofac J; 2007 Jan; 44(1):87-91. PubMed ID: 17214529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emergence of vowels in an infant.
    Buhr RD
    J Speech Hear Res; 1980 Mar; 23(1):73-94. PubMed ID: 7442186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interspeaker variability in hard palate morphology and vowel production.
    Lammert A; Proctor M; Narayanan S
    J Speech Lang Hear Res; 2013 Dec; 56(6):S1924-33. PubMed ID: 24687447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A noninvasive acoustic method using frequency perturbations and computer-generated vocal-tract shapes.
    Beckman DA; Wold DC; Montague JC
    J Speech Hear Res; 1983 Jun; 26(2):304-14. PubMed ID: 6224967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic consequences of differences in male and female vocal tract dimensions.
    Simpson AP
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2153-64. PubMed ID: 11386567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An acoustic study of the tongue root contrast in Degema vowels.
    Fulop SA; Kari E; Ladefoged P
    Phonetica; 1998; 55(1-2):80-98. PubMed ID: 9693345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocal tract resonances and the sound of the Australian didjeridu (yidaki) II. Theory.
    Fletcher NH; Hollenberg LC; Smith J; Tarnopolsky AZ; Wolfe J
    J Acoust Soc Am; 2006 Feb; 119(2):1205-13. PubMed ID: 16521781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of speech production based on the acoustic relativity of the vocal tract.
    Story BH; Bunton K
    J Acoust Soc Am; 2019 Oct; 146(4):2522. PubMed ID: 31671993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acoustical significance of tongue, lip, and larynx maneuvers in rounded palatal vowels.
    Wood S
    J Acoust Soc Am; 1986 Aug; 80(2):391-401. PubMed ID: 3745671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic-articulatory mapping in vowels by locally weighted regression.
    McGowan RS; Berger MA
    J Acoust Soc Am; 2009 Oct; 126(4):2011-32. PubMed ID: 19813812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.