These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 744832)

  • 1. Linear prediction analysis of speech based on a pole-zero representation.
    Atal BS; Schroeder MR
    J Acoust Soc Am; 1978 Nov; 64(5):1310-8. PubMed ID: 744832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech synthesis by glottal excited linear prediction.
    Childers DG; Hu HT
    J Acoust Soc Am; 1994 Oct; 96(4):2026-36. PubMed ID: 7963019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the anatomical encoding of voice with a mathematical model of the vocal system.
    Assaneo MF; Sitt J; Varoquaux G; Sigman M; Cohen L; Trevisan MA
    Neuroimage; 2016 Nov; 141():31-39. PubMed ID: 27436593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse filtering of nasalized vowels using synthesized speech.
    Gobl C; Mahshie J
    J Voice; 2013 Mar; 27(2):155-69. PubMed ID: 23231805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one-dimensional search method with stable 1-norm solution for linear prediction.
    Jayesh MK; Ramalingam CS
    J Acoust Soc Am; 2017 Aug; 142(2):EL170. PubMed ID: 28863564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of glottal excitation cycles in running speech.
    Hess WJ
    Phonetica; 1995; 52(3):196-204. PubMed ID: 7568395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustics and perception of overtone singing.
    Bloothooft G; Bringmann E; van Cappellen M; van Luipen JB; Thomassen KP
    J Acoust Soc Am; 1992 Oct; 92(4 Pt 1):1827-36. PubMed ID: 1401528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glottal characteristics of female speakers: acoustic correlates.
    Hanson HM
    J Acoust Soc Am; 1997 Jan; 101(1):466-81. PubMed ID: 9000737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic properties of the nasal tract.
    Lindqvist-Gauffin J; Sundberg J
    Phonetica; 1976; 33(3):161-8. PubMed ID: 996111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal quality factors: analysis, synthesis, and perception.
    Childers DG; Lee CK
    J Acoust Soc Am; 1991 Nov; 90(5):2394-410. PubMed ID: 1837797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Line spectral frequencies are poles and zeros of the glottal driving-point impedance of a discrete matched-impedance vocal tract model.
    Hasegawa-Johnson M
    J Acoust Soc Am; 2000 Jul; 108(1):457-60. PubMed ID: 10923910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representations of sound that are insensitive to spectral filtering and parametrization procedures.
    Levin DN
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2257-71. PubMed ID: 12051446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of glottal dynamics in the production of shouted speech.
    Mittal VK; Yegnanarayana B
    J Acoust Soc Am; 2013 May; 133(5):3050-61. PubMed ID: 23654408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic analysis of trill sounds.
    Dhananjaya N; Yegnanarayana B; Bhaskararao P
    J Acoust Soc Am; 2012 Apr; 131(4):3141-52. PubMed ID: 22501086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infinite-impulse-response models of the head-related transfer function.
    Kulkarni A; Colburn HS
    J Acoust Soc Am; 2004 Apr; 115(4):1714-28. PubMed ID: 15101650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for generating natural-sounding speech stimuli for cognitive brain research.
    Alku P; Tiitinen H; Näätänen R
    Clin Neurophysiol; 1999 Aug; 110(8):1329-33. PubMed ID: 10454267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TKK Aparat: an environment for voice inverse filtering and parameterization.
    Airas M
    Logoped Phoniatr Vocol; 2008; 33(1):49-64. PubMed ID: 18344143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the Effects of Glottal Stop Productions on Voice in Children With Cleft Palate Using Multidimensional Voice Assessment Methods.
    Aydınlı FE; Özcebe E; Kulak Kayıkçı ME; Yılmaz T; Özgür FF
    J Voice; 2016 Nov; 30(6):763.e9-763.e15. PubMed ID: 26739858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.