These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 7449055)

  • 1. Effect of direct-current countershocks on regional myocardial contractility and perfusion. Experimental studies.
    Kerber RE; Martins JB; Gascho JA; Marcus ML; Grayzel J
    Circulation; 1981 Feb; 63(2):323-32. PubMed ID: 7449055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct current shocks to the heart generate free radicals: an electron paramagnetic resonance study.
    Caterine MR; Spencer KT; Pagan-Carlo LA; Smith RS; Buettner GR; Kerber RE
    J Am Coll Cardiol; 1996 Nov; 28(6):1598-609. PubMed ID: 8917277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overlapping sequential pulses. A new waveform for transthoracic defibrillation.
    Kerber RE; Spencer KT; Kallok MJ; Birkett C; Smith R; Yoerger D; Kieso RA
    Circulation; 1994 May; 89(5):2369-79. PubMed ID: 8181163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of shock energy, propranolol, and verapamil on cardiac damage caused by transthoracic countershock.
    Patton JN; Allen JD; Pantridge JF
    Circulation; 1984 Feb; 69(2):357-68. PubMed ID: 6690102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation.
    Dalzell GW; Adgey AA
    Br Heart J; 1991 Jun; 65(6):311-6. PubMed ID: 2054239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of direct-current electrical shocks on systolic and diastolic left ventricular function in dogs.
    Ditchey RV; LeWinter MM
    Am Heart J; 1983 May; 105(5):727-31. PubMed ID: 6846116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocardiographic and serum enzymic alterations associated with cardiac alterations induced in dogs by single transthoracic damped sinusoidal defibrillator shocks of various strengths.
    Tacker WA; Van Vleet JF; Geddes LA
    Am Heart J; 1979 Aug; 98(2):185-93. PubMed ID: 453021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks.
    Chen PS; Shibata N; Dixon EG; Wolf PD; Danieley ND; Sweeney MB; Smith WM; Ideker RE
    J Clin Invest; 1986 Mar; 77(3):810-23. PubMed ID: 3949979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural alterations in the right and left ventricular myocardium following multiple low energy endocardial countershocks in anesthetized dogs.
    Schirmer U; Hemmer W; Lindner KH; Anhäupl T; Wieser T
    Pacing Clin Electrophysiol; 1997 Jan; 20(1 Pt 1):79-87. PubMed ID: 9121975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of cardiac defibrillation in open-chest dogs with unipolar DC-coupled simultaneous activation and shock potential recordings.
    Witkowski FX; Penkoske PA; Plonsey R
    Circulation; 1990 Jul; 82(1):244-60. PubMed ID: 2364513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of ischemically induced ventricular fibrillation for comparison of fixed-dose and escalating-dose defibrillation strategies.
    Niemann JT; Rosborough JP; Walker RG
    Acad Emerg Med; 2004 Jun; 11(6):619-24. PubMed ID: 15175198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative metabolism and myocardial blood flow changes after transthoracic DC countershocks in dogs.
    Trouton TG; Allen JD; Adgey AA
    Eur Heart J; 1992 Oct; 13(10):1431-40. PubMed ID: 1396821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of myocardial damage from defibrillator discharges at various dosages.
    Ewy GA; Taren D; Bangert J; McClung S; Hellman DA
    Med Instrum; 1980; 14(1):9-12. PubMed ID: 7354738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional cardiac depression caused by defibrillator shocks. Quantitation of the safety factor for electrical defibrillation.
    Niebauer MJ; Babbs CF; Geddes LA; Carter JE; Bourland JD
    Jpn Heart J; 1984 Sep; 25(5):773-81. PubMed ID: 6512993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nisoldipine on hemodynamic responses to defibrillation.
    Kieso RA; Fox-Eastham K; Kerber RE
    Am Heart J; 1991 Mar; 121(3 Pt 1):834-9. PubMed ID: 2000751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atrial defibrillation using temporary epicardial defibrillation stainless steel wire electrodes: studies in the canine sterile pericarditis model.
    Ortiz J; Sokoloski MC; Ayers GM; Cmolik BL; Niwano S; Geha AS; Waldo AL
    J Am Coll Cardiol; 1995 Nov; 26(5):1356-64. PubMed ID: 7594054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defibrillation delivered during the upstroke phase of manual chest compression improves shock success.
    Li Y; Wang H; Cho JH; Quan W; Freeman G; Bisera J; Weil MH; Tang W
    Crit Care Med; 2010 Mar; 38(3):910-5. PubMed ID: 20042857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial dysfunction after electrical defibrillation.
    Yamaguchi H; Weil M; Tang W; Kamohara T; Jin X; Bisera J
    Resuscitation; 2002 Sep; 54(3):289-96. PubMed ID: 12204463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defibrillation depresses heart sarcoplasmic reticulum calcium pump: a mechanism of postshock dysfunction.
    Jones DL; Narayanan N
    Am J Physiol; 1998 Jan; 274(1):H98-105. PubMed ID: 9458857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms.
    Dixon EG; Tang AS; Wolf PD; Meador JT; Fine MJ; Calfee RV; Ideker RE
    Circulation; 1987 Nov; 76(5):1176-84. PubMed ID: 3665001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.