These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 744946)

  • 21. [Experimental study of the effect of the ectoderm on the chondrogenic differentiation of the mesoderm of the mouse embryo limb in vitro. Results of a histological analysis].
    Desbiens X
    C R Seances Acad Sci III; 1983; 296(13):593-6. PubMed ID: 6412974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stage- and region-dependent chondrogenesis and growth of chick wing-bud mesenchyme in serum-containing and defined tissue culture media.
    Paulsen DF; Chen WD; Pang L; Johnson B; Okello D
    Dev Dyn; 1994 May; 200(1):39-52. PubMed ID: 8081013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis.
    Hatakeyama Y; Tuan RS; Shum L
    J Cell Biochem; 2004 Apr; 91(6):1204-17. PubMed ID: 15048875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic nucleotides during chondrogenesis: concentration and distribution in vivo and in vitro.
    Ho WC; Greene RM; Shanfeld J; Davidovitch Z
    J Exp Zool; 1982 Dec; 224(3):321-30. PubMed ID: 6296269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
    Gamer LW; Cox KA; Small C; Rosen V
    Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hif-1alpha regulates differentiation of limb bud mesenchyme and joint development.
    Provot S; Zinyk D; Gunes Y; Kathri R; Le Q; Kronenberg HM; Johnson RS; Longaker MT; Giaccia AJ; Schipani E
    J Cell Biol; 2007 May; 177(3):451-64. PubMed ID: 17470636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation.
    DeLise AM; Stringa E; Woodward WA; Mello MA; Tuan RS
    Methods Mol Biol; 2000; 137():359-75. PubMed ID: 10948551
    [No Abstract]   [Full Text] [Related]  

  • 28. Effects of a putative prostaglandin E2 antagonist, AH6809, on chondrogenesis in serum-free cultures of chick limb mesenchyme.
    Capehart AA; Biddulph DM
    J Cell Physiol; 1991 Jun; 147(3):403-11. PubMed ID: 1648563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue patterning in the developing mouse limb.
    Martin P
    Int J Dev Biol; 1990 Sep; 34(3):323-36. PubMed ID: 1702679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-cadherin is not essential for limb mesenchymal chondrogenesis.
    Luo Y; Kostetskii I; Radice GL
    Dev Dyn; 2005 Feb; 232(2):336-44. PubMed ID: 15614770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro.
    DeLise AM; Tuan RS
    J Cell Biochem; 2002; 87(3):342-59. PubMed ID: 12397616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ectoderm-mesenchyme and mesenchyme-mesenchyme interactions regulate Msx-1 expression and cellular differentiation in the murine limb bud.
    Wang Y; Sassoon D
    Dev Biol; 1995 Apr; 168(2):374-82. PubMed ID: 7537232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Contribution of somite cells to the development of posterior limb buds in mice].
    Milaire J
    Arch Biol (Liege); 1976; 87(3):315-43. PubMed ID: 1020950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mammalian limb bud development: in situ fate maps of early hindlimb buds.
    Muneoka K; Wanek N; Bryant SV
    J Exp Zool; 1989 Jan; 249(1):50-4. PubMed ID: 2926361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of the cell cycle of limb bud mesenchyme during in vitro cartilage differentiation.
    Hadházy C; Szöllösi J
    Acta Biol Hung; 1983; 34(4):407-14. PubMed ID: 6237535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MEK-ERK signaling plays diverse roles in the regulation of facial chondrogenesis.
    Bobick BE; Kulyk WM
    Exp Cell Res; 2006 Apr; 312(7):1079-92. PubMed ID: 16457813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of chondrogenic tissue in programmed cell death and BMP expression in chick limb buds.
    Omi M; Sato-Maeda M; Ide H
    Int J Dev Biol; 2000 Jun; 44(4):381-8. PubMed ID: 10949047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells.
    Chimal-Monroy J; Díaz de León L
    Int J Dev Biol; 1997 Feb; 41(1):91-102. PubMed ID: 9074941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The pattern of expression of the chicken homolog of HOX1I in the developing limb suggests a possible role in the ectodermal inhibition of chondrogenesis.
    Rogina B; Coelho CN; Kosher RA; Upholt WB
    Dev Dyn; 1992 Jan; 193(1):92-101. PubMed ID: 1347239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of various lectins during chondrogenesis in mouse limb buds.
    Zimmermann B
    Acta Histochem Suppl; 1986; 32():127-31. PubMed ID: 2422680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.