These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7449880)

  • 1. DNA replication in lens vesicles of Ambystoma maculatum embryos implanted into ocular or extra-ocular sites of host larvae.
    Reyer RW
    Exp Eye Res; 1980 Oct; 31(4):451-62. PubMed ID: 7449880
    [No Abstract]   [Full Text] [Related]  

  • 2. Morphological evidence for lens differentiation from intra-ocular implants of lens epithelium in Ambystoma maculatum.
    Reyer RW
    Exp Eye Res; 1977 May; 24(5):511-22. PubMed ID: 862683
    [No Abstract]   [Full Text] [Related]  

  • 3. 3H-thymidine mediated and delayed nuclear labeling in frog lens epithelium. Evidence for reutilization of DNA precursors.
    Rafferty NS; Gfeller E
    Exp Cell Res; 1970 Feb; 59(2):249-58. PubMed ID: 5413545
    [No Abstract]   [Full Text] [Related]  

  • 4. Ontogeny and localization of gamma-crystallins in Rana temporaria, Ambystoma mexicanum and Pleurodeles waltlii normal lens development.
    Brahma SK; McDevitt DS
    Exp Eye Res; 1974 Oct; 19(4):379-87. PubMed ID: 4214710
    [No Abstract]   [Full Text] [Related]  

  • 5. Developmental and interactive effects of arsenic and chromium to developing Ambystoma maculatum embryos: Toxicity, teratogenicity, and whole-body concentrations.
    Gardner S; Cline G; Mwebi N; Rayburn J
    J Toxicol Environ Health A; 2017; 80(2):91-104. PubMed ID: 28085642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation and growth of the embryonic nose, lens and corneal anlagen implanted into the larval eye or dorsal fin in Amblystoma punctatum.
    REYER RW
    J Exp Zool; 1962 Nov; 151():123-53. PubMed ID: 13981896
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparative study of the early embryonic cytology and nucleic acid synthesis of Ambystoma mexicanum normal and o mutant embryos.
    Carroll CR
    J Exp Zool; 1974 Mar; 187(3):409-22. PubMed ID: 4820344
    [No Abstract]   [Full Text] [Related]  

  • 8. Axolotl retina and lens development: mutual tissue stimulation and autonomous failure in the eyeless mutant retina.
    Cuny R; Malacinski GM
    J Embryol Exp Morphol; 1986 Jul; 96():151-70. PubMed ID: 3805980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss during development of the ability of chick embryonic lens cells to elongate in culture: inverse relationship between cell division and elongation.
    Piatigorsky J; Rothschild SS
    Dev Biol; 1972 Jun; 28(2):382-9. PubMed ID: 5031807
    [No Abstract]   [Full Text] [Related]  

  • 10. The influence of L-thyroxine on the change in red blood cell type in the axolotl.
    Ducibella T
    Dev Biol; 1974 May; 38(1):187-94. PubMed ID: 4826287
    [No Abstract]   [Full Text] [Related]  

  • 11. Lens induction in axolotls: comparison with inductive signaling mechanisms in Xenopus laevis.
    Servetnick MD; Cook TL; Grainger RM
    Int J Dev Biol; 1996 Aug; 40(4):755-61. PubMed ID: 8877449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tritium-labeled thymidine clearance from the aqueous humor and uptake in the lens epithelium of the rat eye.
    Devi SK; Riley EF
    Exp Eye Res; 1965 Sep; 4(3):223-30. PubMed ID: 5839237
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence for introduction of a variable G1 phase at the midblastula transition during early development in axolotl.
    Lefresne J; Andéol Y; Signoret J
    Dev Growth Differ; 1998 Oct; 40(5):497-508. PubMed ID: 9783475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Proliferation of lens cells in mouse embryos with hereditary microphthalmos].
    Sazhina MV; Masternak TB
    Biull Eksp Biol Med; 1972 Jul; 73(7):107-9. PubMed ID: 5047716
    [No Abstract]   [Full Text] [Related]  

  • 15. Intracapsular algae provide fixed carbon to developing embryos of the salamander Ambystoma maculatum.
    Graham ER; Fay SA; Davey A; Sanders RW
    J Exp Biol; 2013 Feb; 216(Pt 3):452-9. PubMed ID: 23038736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chicken embryo lens cultures mimic differentiation in the lens.
    Menko AS; Klukas KA; Johnson RG
    Dev Biol; 1984 May; 103(1):129-41. PubMed ID: 6370757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Induction mechanisms and the programming of differentiation].
    Lopashov GV; Khoperskaia OA
    Ontogenez; 1977; 8(6):563-81. PubMed ID: 341012
    [No Abstract]   [Full Text] [Related]  

  • 18. DNA synthesis and mitotic activity during early development of chick lens.
    Modak SP; Morris G; Yamada T
    Dev Biol; 1968 May; 17(5):544-61. PubMed ID: 5658458
    [No Abstract]   [Full Text] [Related]  

  • 19. Stimulation of lens regeneration from the newt dorsal iris when implanted into the blastema of the regenerating limb.
    Reyer RW; Woolfitt RA; Withersty LT
    Dev Biol; 1973 Jun; 32(2):258-81. PubMed ID: 4789696
    [No Abstract]   [Full Text] [Related]  

  • 20. Lens regeneration in larval Xenopus laevis: experimental analysis of the decline in the regenerative capacity during development.
    Filoni S; Bernardini S; Cannata SM; D'Alessio A
    Dev Biol; 1997 Jul; 187(1):13-24. PubMed ID: 9224670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.