These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 745139)

  • 1. Kinetics of the co-transport of phenylalanine and sodium ions in the guinea-pig small intestine. 1. Phenylalanine fluxes.
    Sepúlveda FV; Robinson JW
    J Physiol (Paris); 1978 Dec; 74(6):569-74. PubMed ID: 745139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the co-transport of phenylalanine and sodium ions in the guinea-pig small intestine. II. Sodium fluxes and flux ratios.
    Sepúlveda FV; Robinson JW
    J Physiol (Paris); 1978 Dec; 74(6):575-83. PubMed ID: 745140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the co-transport of sodium and phenylalanine in the guinea-pig samll intestine. III - Influence of harmaline on sodium and phenylalanine fluxes.
    Sepúlveda EV; Robinson JW
    J Physiol (Paris); 1978 Dec; 74(6):585-90. PubMed ID: 745141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetics of sodium-dependent phenylalanine influx in the intestine of the dog: a comparison between ileum and colon.
    Robinson JW; Antonioli JA; Johansen S
    J Physiol (Paris); 1980 Nov; 76(6):637-45. PubMed ID: 7441573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.
    Alvarado F; Lherminier M
    J Physiol (Paris); 1982 Aug; 78(2):131-45. PubMed ID: 7131327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of sodium-activated phenylalanine influx in the guinea-pig intestine in vitro [proceedings].
    Robinson JW; Sepulveda FV
    J Physiol; 1977 Mar; 266(1):42P-43P. PubMed ID: 853408
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of phenylalanine influx in guinea-pig small intestine by naringenin [proceedings].
    Robinson JW
    J Physiol; 1979 Apr; 289():44P-45P. PubMed ID: 458679
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetics of the sodium/beta-methyl-D-glucoside co-transport system in the guinea-pig small intestine.
    Robinson JW; Van Melle G
    J Physiol; 1983 Nov; 344():177-87. PubMed ID: 6655578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of effect of intracellular sodium on phenylalanine and beta-methyl-glucoside influx into the guinea-pig enterocyte.
    Buclon M; Robinson JW; Sepúlveda FV
    J Physiol (Paris); 1979; 75(5):571-9. PubMed ID: 533874
    [No Abstract]   [Full Text] [Related]  

  • 10. Na-dependent transport of S-(1,2-dichlorovinyl)-L-cysteine by renal brush-border membrane vesicles.
    Wright SH; Wunz TM; North J; Stevens JL
    J Pharmacol Exp Ther; 1998 Apr; 285(1):162-9. PubMed ID: 9536006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Harmaline, an inhibitor of the process of intestinal transport associated sodium-ion transport].
    Sepúlveda FV; Buclon M; Robinson JW
    Gastroenterol Clin Biol; 1977; 1(1):87-93. PubMed ID: 873109
    [No Abstract]   [Full Text] [Related]  

  • 12. Glutamine transport in isolated epithelial intestinal cells. Identification of a Na+-dependent transport mechanism, highly specific for glutamine.
    del Castillo JR; Súlbaran-Carrasco MC; Burguillos L
    Pflugers Arch; 2002 Dec; 445(3):413-22. PubMed ID: 12466945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active transport of L-phenylalanine by snail intestine, Helix (Cryptomphalus) aspersa.
    Hueto MN; Martínez AM; Barber A; Ponz F
    Rev Esp Fisiol; 1982 Dec; 38(4):403-8. PubMed ID: 7170427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of myo-inositol transport in rat ocular lens.
    Diecke FP; Beyer-Mears A; Mistry K
    J Cell Physiol; 1995 Feb; 162(2):290-7. PubMed ID: 7822436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Co-transport of sugar and sodium ion in animal cells].
    Hoshi T
    Tanpakushitsu Kakusan Koso; 1971 Aug; 16(9):735-44. PubMed ID: 4936490
    [No Abstract]   [Full Text] [Related]  

  • 16. Rheogenic transport of basic and acidic amino acids across the brush border of Necturus small intestine.
    Armstrong WM; Lyall V; Corcia A; Acevedo M
    Prog Clin Biol Res; 1988; 258():43-65. PubMed ID: 2898150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functioning of systems of the neutral amino acid transport in enterocyte brush-border membranes of rat small intestine under normal conditions and after ionising radiation.
    Hizhnyak SV; Bublik AA; Voitsitsky VM; Kucherenko NE
    Membr Cell Biol; 2001; 14(6):765-71. PubMed ID: 11817572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-site uptake of neutral amino acids into guinea-pig intestinal rings.
    Robinson JW; van Melle G
    J Physiol; 1982 Feb; 323():569-87. PubMed ID: 6808120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New characteristics of harmaline inhibition of intestinal transport systems.
    Sepúlveda FV; Robinson JW
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 291(2):201-12. PubMed ID: 1059879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible binding and irreversible translocation: two distinct stages in sodium and solute cotransport in the small intestine [proceedings].
    Alvarado F
    J Physiol; 1979 Jul; 292():77P-78P. PubMed ID: 490413
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.