These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 7451411)
1. Electron transfer reactions of cytochrome f from Brassica komatsuna with hexacyanoferrate. Takabe T; Niwa S; Ishikawa H; Takenaka K J Biochem; 1980 Oct; 88(4):1167-76. PubMed ID: 7451411 [TBL] [Abstract][Full Text] [Related]
2. Electron transfer reactions between cytochrome f and plastocyanin from Brassica komatsuna. Niwa S; Ishikawa H; Nikai S; Takabe T J Biochem; 1980 Oct; 88(4):1177-83. PubMed ID: 7451412 [TBL] [Abstract][Full Text] [Related]
3. Importance of local positive charges on cytochrome f for electron transfer to plastocyanin and potassium ferricyanide. Takenaka K; Takabe T J Biochem; 1984 Dec; 96(6):1813-21. PubMed ID: 6530399 [TBL] [Abstract][Full Text] [Related]
4. Metalloprotein association, self-association, and dynamics governed by hydrophobic interactions: simultaneous occurrence of gated and true electron-transfer reactions between cytochrome f and cytochrome c(6) from Chlamydomonas reinhardtii. Grove TZ; Kostić NM J Am Chem Soc; 2003 Sep; 125(35):10598-607. PubMed ID: 12940743 [TBL] [Abstract][Full Text] [Related]
5. Effects of NO2-modification of Tyr83 on the reactivity of spinach plastocyanin with cytochrome f. Christensen HE; Conrad LS; Ulstrup J Biochim Biophys Acta; 1992 Jan; 1099(1):35-44. PubMed ID: 1739726 [TBL] [Abstract][Full Text] [Related]
6. Electron transfer reactions of chemically modified plastocyanin with P700 and cytochrome f. Importance of local charges. Takabe T; Ishikawa H; Niwa S; Tanaka Y J Biochem; 1984 Aug; 96(2):385-93. PubMed ID: 6501248 [TBL] [Abstract][Full Text] [Related]
7. Charges on proteins and distances of electron transfer in metalloprotein redox reactions. Takabe T; Takenaka K; Kawamura H; Beppu Y J Biochem; 1986 Mar; 99(3):833-40. PubMed ID: 3711045 [TBL] [Abstract][Full Text] [Related]
8. Ferricytochrome c oxidation of cobaltocytochrome c. Comparison of experiments with electron-transfer theories. Chien JC; Gibson HL; Dickinson LC Biochemistry; 1978 Jun; 17(13):2579-84. PubMed ID: 209821 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of electron transfer between cytochrome c and laccase. Sakurai T Biochemistry; 1992 Oct; 31(40):9844-7. PubMed ID: 1327127 [TBL] [Abstract][Full Text] [Related]
10. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo. Soriano GM; Ponamarev MV; Piskorowski RA; Cramer WA Biochemistry; 1998 Oct; 37(43):15120-8. PubMed ID: 9790675 [TBL] [Abstract][Full Text] [Related]
11. Electron-transfer from cytochrome c to ascorbate oxidase and its type 2 copper-depleted derivatives. Sakurai T J Inorg Biochem; 1994 Aug; 55(3):193-202. PubMed ID: 8057089 [TBL] [Abstract][Full Text] [Related]
12. Electron-transfer reactions of cytochrome f with flavin semiquinones and with plastocyanin. Importance of protein-protein electrostatic interactions and of donor-acceptor coupling. Qin L; Kostić NM Biochemistry; 1992 Jun; 31(22):5145-50. PubMed ID: 1606137 [TBL] [Abstract][Full Text] [Related]
13. Cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). Electrochemical properties and electron transfer with hydrogenase. Verhagen MF; Wolbert RB; Hagen WR Eur J Biochem; 1994 Apr; 221(2):821-9. PubMed ID: 8174562 [TBL] [Abstract][Full Text] [Related]
14. Reduction of horse heart ferricytochrome c by bovine liver ferrocytochrome b5. Experimental and theoretical analysis. Eltis LD; Herbert RG; Barker PD; Mauk AG; Northrup SH Biochemistry; 1991 Apr; 30(15):3663-74. PubMed ID: 1849735 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c. Seetharaman R; White SP; Rivera M Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180 [TBL] [Abstract][Full Text] [Related]
16. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer. Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677 [TBL] [Abstract][Full Text] [Related]
17. The kinetics and specificity of electron transfer from cytochromes and copper proteins to P700. Wood PM; Bendall DS Biochim Biophys Acta; 1975 Apr; 387(1):115-28. PubMed ID: 1125282 [TBL] [Abstract][Full Text] [Related]
18. Electron transfer from the Rieske iron-sulfur protein (ISP) to cytochrome f in vitro. Is a guided trajectory of the ISP necessary for competent docking? Soriano GM; Guo LW; De Vitry C; Kallas T; Cramer WA J Biol Chem; 2002 Nov; 277(44):41865-71. PubMed ID: 12207018 [TBL] [Abstract][Full Text] [Related]
19. Perturbation of the internal water chain in cytochrome f of oxygenic photosynthesis: loss of the concerted reduction of cytochromes f and b6. Ponamarev MV; Cramer WA Biochemistry; 1998 Dec; 37(49):17199-208. PubMed ID: 9860833 [TBL] [Abstract][Full Text] [Related]
20. Electron transport by C-type cytochromes. I. The reaction of horse heart cytochrome c with anionic reductants. Miller WG; Cusanovich MA Biophys Struct Mech; 1975 Feb; 1(2):97-111. PubMed ID: 10021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]