These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7451429)

  • 1. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit.
    Ganapathy V; Mendicino JF; Leibach FH
    J Biol Chem; 1981 Jan; 256(1):118-24. PubMed ID: 7451429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles.
    Ganapathy V; Burckhardt G; Leibach FH
    J Biol Chem; 1984 Jul; 259(14):8954-9. PubMed ID: 6746633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles.
    Rajendran VM; Ansari SA; Harig JM; Adams MB; Khan AH; Ramaswamy K
    Gastroenterology; 1985 Dec; 89(6):1298-304. PubMed ID: 4054522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a dipeptide transport system in renal brush border membranes from rabbit.
    Ganapathy V; Mendicino J; Leibach FH
    Biochim Biophys Acta; 1981 Apr; 642(2):381-91. PubMed ID: 7284363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycyl-L-phenylalanine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1981 Dec; 649(2):179-88. PubMed ID: 7032591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles.
    Rajendran VM; Berteloot A; Ramaswamy K
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G682-6. PubMed ID: 4003548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline.
    Ganapathy V; Leibach FH
    J Biol Chem; 1983 Dec; 258(23):14189-92. PubMed ID: 6643475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. II. Uptake of glycyl-L-leucine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1982 Mar; 686(1):47-54. PubMed ID: 7066321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-dependent inhibition of amino acid and dipeptide transport by harmaline in monkey small intestine.
    Ganapathy V; Radhakrishnan AN
    Biochem Pharmacol; 1980 Mar; 29(5):713-6. PubMed ID: 20227945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrier-mediated transport of pyroglutamyl-histidine in renal brush border membrane vesicles.
    Skopicki HA; Fisher K; Zikos D; Flouret G; Bloch R; Kubillus S; Peterson DR
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C822-7. PubMed ID: 3202151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipeptide transport in isolated intestinal brush border membrane.
    Sigrist-Nelson K
    Biochim Biophys Acta; 1975 Jun; 394(2):220-6. PubMed ID: 1138931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.
    Fass SJ; Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):583-90. PubMed ID: 833145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of glycine from L-alanylglycine into renal brush border vesicles.
    Welch CL; Campbell BJ
    J Membr Biol; 1980; 54(1):39-50. PubMed ID: 7205942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-gradient-dependent transport of L-proline and analysis of its carrier system in brush-border membrane vesicles of the guinea-pig ileum.
    Hayashi K; Yamamoto SI; Ohe K; Miyoshi A; Kawasaki T
    Biochim Biophys Acta; 1980 Oct; 601(3):654-63. PubMed ID: 7417443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of glycyl-L-proline transport in intestinal brush-border membrane vesicles.
    Rajendran VM; Harig JM; Ramaswamy K
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G281-6. PubMed ID: 3030128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of glycyl-L-proline in intestinal brush-border membrane vesicles of the suckling rat: characteristics and maturation.
    Said HM; Ghishan FK; Redha R
    Biochim Biophys Acta; 1988 Jun; 941(2):232-40. PubMed ID: 3382647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+-dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system.
    Hammerman MR; Sacktor B
    Biochim Biophys Acta; 1982 Apr; 686(2):189-96. PubMed ID: 7082661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of amino acids in renal brush border membrane vesicles. Uptake of L-proline.
    Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):591-5. PubMed ID: 833146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide transport in rabbit kidney. Studies with L-carnosine.
    Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1982 Oct; 691(2):362-6. PubMed ID: 6814488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.