BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 7451647)

  • 1. Membrane-bound cytochrome b5 reductase (methemoglobin reductase) in human erythrocytes. Study in normal and methemoglobinemic subjects.
    Choury D; Leroux A; Kaplan JC
    J Clin Invest; 1981 Jan; 67(1):149-55. PubMed ID: 7451647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration of NADH-cytochrome b5 reductase in erythrocytes of normal and methemoglobinemic individuals measured with a quantitative radioimmunoblotting assay.
    Borgese N; Pietrini G; Gaetani S
    J Clin Invest; 1987 Nov; 80(5):1296-302. PubMed ID: 3680497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytosolic and membrane-bound methemoglobin reductases in erythrocytes of the opossum, Didelphis virginiana.
    Bethlenfalvay NC; Waterman MR; Lima JE; Waldrup T
    Comp Biochem Physiol B; 1982; 73(3):591-4. PubMed ID: 7151403
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on methemoglobin reductase. Immunochemical similarity of soluble methemoglobin reductase and cytochrome b5 of human erythrocytes with NADH-cytochrome b5 reductase and cytochrome b5 of rat liver microsomes.
    Kuma F; Prough RA; Masters BS
    Arch Biochem Biophys; 1976 Feb; 172(2):600-7. PubMed ID: 1259422
    [No Abstract]   [Full Text] [Related]  

  • 5. Endogenous proteolysis of membrane-bound red cell cytochrome-b5 reductase in adults and newborns: its possible relevance to the generation of the soluble "methemoglobin reductase".
    Choury D; Reghis A; Pichard AL; Kaplan JC
    Blood; 1983 May; 61(5):894-8. PubMed ID: 6831051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymopenic hereditary methemoglobinemia.
    Jaffé ER
    Haematologia (Budap); 1982 Dec; 15(4):389-99. PubMed ID: 6764628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dependence of human erythrocyte methemoglobin reductase on temperature].
    Kozlova NM; Chernitskiĭ EA
    Biokhimiia; 1991 Feb; 56(2):342-5. PubMed ID: 1873346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for endogenous proteolytic solubilization of human red-cell membrane NADH-cytochrome b5 reductase.
    Choury D; Wajcman H; Boissel JP; Kaplan JC
    FEBS Lett; 1981 Apr; 126(2):172-4. PubMed ID: 7016586
    [No Abstract]   [Full Text] [Related]  

  • 9. [Polyacrylamide gel isoelectric focusing for the study of erythrocyte methemoglobin reductase].
    Kazanets EG; Zakharova FA; Levina AA; Andreeva AP; Tokarev IuN
    Probl Gematol Pereliv Krovi; 1982 Nov; 27(11):56-8. PubMed ID: 7156081
    [No Abstract]   [Full Text] [Related]  

  • 10. Congenital methemoglobin-reductase (cytochrome b5 reductase) deficiency associated with mental retardation in a Spanish girl.
    Vives-Corrons JL; Pujades A; Vela E; Corretger JM; Leroux A; Kaplan JC
    Acta Haematol; 1978; 59(6):348-53. PubMed ID: 97893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rat erythrocyte NADH-cytochrome b5 reductase. Quantitation and comparison between the membrane-bound and soluble forms using an antibody against the rat liver enzyme.
    Borgese N; Macconi D; Parola L; Pietrini G
    J Biol Chem; 1982 Nov; 257(22):13854-61. PubMed ID: 7142181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Method of determination of the activity of NAD-N2-dependent methemoglobin reductase in the erythrocytes].
    Derviz GV
    Lab Delo; 1976; (4):220-4. PubMed ID: 66375
    [No Abstract]   [Full Text] [Related]  

  • 13. Exponential decay of cytochrome b5 and cytochrome b5 reductase during senescence of erythrocytes: relation to the increased methemoglobin content.
    Takeshita M; Tamura M; Yubisui T; Yoneyama Y
    J Biochem; 1983 Mar; 93(3):931-4. PubMed ID: 6874674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soluble and microsomal forms of NADH-cytochrome beta 5 reductase from human placenta. Similarity with NADH-methemoglobin reductase from human erythrocytes.
    Leroux A; Torlinski L; Kaplan JC
    Biochim Biophys Acta; 1977 Mar; 481(1):50-62. PubMed ID: 402944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Clinical and biological forms of cytochrome b5 reductase deficiency].
    Kaplan JC; Leroux A; Beauvais P
    C R Seances Soc Biol Fil; 1979; 173(2):368-79. PubMed ID: 159760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinamide-adenine dinucleotide-methemoglobin reductase activity in erythrocytes from cats.
    Baker DC; Gaunt SD
    Am J Vet Res; 1985 Jun; 46(6):1354-5. PubMed ID: 4026013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and functional properties of methemoglobin diaphorase in congenital methemoglobinemia.
    Bianchi-Scarra G; Ajmar F; Bruzzone G; Gaetani GF
    Haematologica; 1976 Sep; 61(3):261-8. PubMed ID: 828121
    [No Abstract]   [Full Text] [Related]  

  • 18. [Structural modification of erythrocyte membranes during oxidative stress and activity of membrane bound NADH-methemoglobin reductase].
    Slobozhanina EI; Luk'ianenko LM; Kozlova NM
    Biofizika; 2000; 45(2):288-92. PubMed ID: 10776542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of methemoglobin reductase and kinetic study of methemoglobin reduction.
    Kuma F
    J Biol Chem; 1981 Jun; 256(11):5518-23. PubMed ID: 7240153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes.
    Sannes LJ; Hultquist DE
    Biochim Biophys Acta; 1978 Dec; 544(3):547-54. PubMed ID: 31928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.