BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7452251)

  • 1. Comparison of the development of the fatty acid content and composition of the brain of a precocial species (guinea pig) and a non-precocial species (rat).
    Patel TB; Clark JB
    J Neurochem; 1980 Jul; 35(1):149-54. PubMed ID: 7452251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species.
    Booth RF; Patel TB; Clark JB
    J Neurochem; 1980 Jan; 34(1):17-25. PubMed ID: 6108983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rat, mouse, and guinea pig brain development and microtubule assembly.
    Lennon AM; Francon J; Fellous A; Nunez J
    J Neurochem; 1980 Oct; 35(4):804-13. PubMed ID: 7452291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid composition of human brain phospholipids during normal development.
    Martínez M; Mougan I
    J Neurochem; 1998 Dec; 71(6):2528-33. PubMed ID: 9832152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between malondialdehyde production and arachidonate consumption during NADPH-supported microsomal lipid peroxidation.
    Jordan RA; Schenkman JB
    Biochem Pharmacol; 1982 Apr; 31(7):1393-400. PubMed ID: 6807321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrolytes and water in the brain and cerebrospinal fluid of the foetal sheep and guinea-pig.
    Bradbury MW; Crowder J; Desai S; Reynolds JM; Reynolds M; Saunders NR
    J Physiol; 1972 Dec; 227(2):591-610. PubMed ID: 4647270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid accretion during perinatal brain growth in the pig. A model for fatty acid accretion in human brain.
    Purvis JM; Clandinin MT; Hacker RR
    Comp Biochem Physiol B; 1982; 72(2):195-9. PubMed ID: 7116810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of alpha-tocopherol content in the developing and aging peripheral nervous system: persistence of high correlations with total and specific (n-6) polyunsaturated fatty acids.
    Clément M; Bourre JM
    J Neurochem; 1990 Jun; 54(6):2110-7. PubMed ID: 2338560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of psychosomatic stress in pregnant guinea-pigs on fetal lipid metabolism.
    Dauprat P; Aurousseau B; Bauchart D; Dalle M; Delost P
    J Dev Physiol; 1985 Oct; 7(5):339-45. PubMed ID: 2865283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of incorporation of docosahexaenoic acid into brain and muscle phospholipids during precocial and altricial modes of avian development.
    Speake BK; Wood NA
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jun; 141(2):147-58. PubMed ID: 15939318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipids and development of the human brain.
    Crawford MA
    Biochem Soc Trans; 1976; 4(2):231-3. PubMed ID: 1001654
    [No Abstract]   [Full Text] [Related]  

  • 12. [Early modification of the fatty acid composition of cardiolipins and other phospholipids in rat liver mitochondria during dietary deficiency of essential fatty acids followed by repletion].
    Wolff RL
    Reprod Nutr Dev (1980); 1988; 28(6A):1489-507. PubMed ID: 3238172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid composition and level of diacylglycerols and phosphoglycerides in brain and retina.
    Aveldaño MI; Bazán NG
    Biochim Biophys Acta; 1973 Jan; 296(1):1-9. PubMed ID: 4632674
    [No Abstract]   [Full Text] [Related]  

  • 14. Infant cerebral cortex phospholipid fatty-acid composition and diet.
    Farquharson J; Cockburn F; Patrick WA; Jamieson EC; Logan RW
    Lancet; 1992 Oct; 340(8823):810-3. PubMed ID: 1357244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid transport and utilization for the developing brain.
    Edmond J; Higa TA; Korsak RA; Bergner EA; Lee WN
    J Neurochem; 1998 Mar; 70(3):1227-34. PubMed ID: 9489745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between fatty acids and lipid peroxidation in lungs of neonates.
    Kehrer JP; Autor AP
    Biol Neonate; 1978; 34(1-2):61-7. PubMed ID: 698325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fixation of polyunsaturated fatty acids by alpha fetoprotein and serum albumin in rats. Comparison with the accumulation of these acids in developing rat brain].
    Pineiro A; Olivito AM; Uriel J
    C R Seances Acad Sci D; 1979 Nov; 289(14):1053-6. PubMed ID: 95001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes of N-acetyl-L-aspartic acid, N-acetyl-alpha-aspartylglutamic acid and beta-citryl-L-glutamic acid in different brain regions and spinal cords of rat and guinea pig.
    Miyake M; Kakimoto Y
    J Neurochem; 1981 Oct; 37(4):1064-7. PubMed ID: 7320722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of uniformly labeled 13C-polyunsaturated fatty acids in the synthesis of long-chain fatty acids and cholesterol accumulating in the neonatal rat brain.
    Cunnane SC; Williams SC; Bell JD; Brookes S; Craig K; Iles RA; Crawford MA
    J Neurochem; 1994 Jun; 62(6):2429-36. PubMed ID: 8189246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acids of cerebrosides in different regions of the developing foetal brain.
    Rao PS
    Lipids; 1977 Apr; 12(4):335-9. PubMed ID: 857110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.