These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 7452257)

  • 1. Uptake of nucleotides and catecholamines by chromaffin granules from pig and horse adrenal medulla.
    Carmichael SW; Weber A; Winkler H
    J Neurochem; 1980 Jul; 35(1):270-2. PubMed ID: 7452257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules.
    Kanner BI; Fishkes H; Maron R; Sharon I; Schuldiner S
    FEBS Lett; 1979 Apr; 100(1):175-8. PubMed ID: 437101
    [No Abstract]   [Full Text] [Related]  

  • 3. A characterization of the nucleotide uptake of chromaffin granules of bovine adrenal medulla.
    Aberer W; Kostron H; Huber E; Winkler H
    Biochem J; 1978 Jun; 172(3):353-60. PubMed ID: 28725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla.
    Weber A; Westhead EW; Winkler H
    Biochem J; 1983 Mar; 210(3):789-94. PubMed ID: 6307271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells.
    Holz RW; Senter RA
    J Neurochem; 1985 Nov; 45(5):1548-57. PubMed ID: 3876408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the monoamine uptake system in catecholamine storage vesicles isolated from a pheochromocytoma taken from a child.
    Roisin MP; Isambert MF; Henry JP; Guillot M; Lenoir G
    Biochem Pharmacol; 1984 Jul; 33(14):2245-52. PubMed ID: 6466347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of reserpine and tetrabenazine on catecholamine and ATP storage in cultured bovine adrenal medullary chromaffin cells.
    Caughey B; Kirshner N
    J Neurochem; 1987 Aug; 49(2):563-73. PubMed ID: 3598586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity and mechanism of nucleotide uptake by adrenal chromaffin granules.
    Weber A; Winkler H
    Neuroscience; 1981; 6(11):2269-76. PubMed ID: 7329547
    [No Abstract]   [Full Text] [Related]  

  • 9. Reserpic acid as an inhibitor of norepinephrine transport into chromaffin vesicle ghosts.
    Chaplin L; Cohen AH; Huettl P; Kennedy M; Njus D; Temperley SJ
    J Biol Chem; 1985 Sep; 260(20):10981-5. PubMed ID: 4030777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the carrier of chromaffin granules transport the protonated or the uncharged species of catecholamines?
    Kobold G; Langer R; Burger A
    Naunyn Schmiedebergs Arch Pharmacol; 1985 Nov; 331(2-3):209-19. PubMed ID: 3003589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamine transport by isolated chromaffin granules. Influence of MgATP and a disulfonic stilbene on (R)-norepinephrine/epinephrine exchange and spontaneous epinephrine efflux.
    Ramu A; Pazoles CJ; Creutz CE; Pollard HB
    J Biol Chem; 1981 Feb; 256(3):1229-34. PubMed ID: 7451502
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy utilization in the uptake of catecholamines by synaptic vesicles and adrenal chromaffin granules.
    Toll L; Gundersen CB; Howard BD
    Brain Res; 1977 Nov; 136(1):59-66. PubMed ID: 589446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of meta-iodobenzylguanidine by bovine chromaffin granule membranes.
    Gasnier B; Roisin MP; Scherman D; Coornaert S; Desplanches G; Henry JP
    Mol Pharmacol; 1986 Mar; 29(3):275-80. PubMed ID: 3951433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of norepinephrine transport and reserpine binding by reserpine derivatives.
    Parti R; Ozkan ED; Harnadek GJ; Njus D
    J Neurochem; 1987 Mar; 48(3):949-53. PubMed ID: 3806108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A), ATP and catecholamine content in bovine adrenal medulla, chromaffin granules and chromaffin cells.
    Sillero MA; Del Valle M; Zaera E; Michelena P; García AG; Sillero A
    Biochimie; 1994; 76(5):404-9. PubMed ID: 7849106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis.
    Holz RW; Senter RA; Sharp RR
    J Biol Chem; 1983 Jun; 258(12):7506-13. PubMed ID: 6863252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholamines (CA) and adenosine triphosphate (ATP) are separately stored in bovine adrenal medulla, both in ionic linkage to granule sites, and not as a non-diffusible CA-ATP-protein complex.
    Uvnäs B; Aborg CH
    Acta Physiol Scand; 1988 Mar; 132(3):297-311. PubMed ID: 3227876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of manganese by chromaffin granules in vitro.
    Daniels AJ; Johnson LN; Williams RJ
    J Neurochem; 1979 Oct; 33(4):923-9. PubMed ID: 490164
    [No Abstract]   [Full Text] [Related]  

  • 19. Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla.
    Levine M; Morita K; Heldman E; Pollard HB
    J Biol Chem; 1985 Dec; 260(29):15598-603. PubMed ID: 3877726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flux of catecholamines through chromaffin vesicles in cultured bovine adrenal medullary cells.
    Corcoran JJ; Wilson SP; Kirshner N
    J Biol Chem; 1984 May; 259(10):6208-14. PubMed ID: 6725249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.