These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 7452686)
1. DNA intercalating compounds as potential antitumor agents. 2. Preparation and properties of 7H-pyridocarbazole dimers. Pelaprat D; Delbarre A; Le Guen I; Roques BP; Le Pecq JB J Med Chem; 1980 Dec; 23(12):1336-43. PubMed ID: 7452686 [TBL] [Abstract][Full Text] [Related]
2. DNA intercalating compounds as potential antitumor agents. 1. Preparation and properties of 7H-pyridocarbazoles. Pelaprat D; Oberlin R; Le Guen I; Roques BP; Le Pecq JB J Med Chem; 1980 Dec; 23(12):1330-5. PubMed ID: 7452685 [TBL] [Abstract][Full Text] [Related]
3. Asymmetrical bisintercalators as potential antitumor agents. Léon P; Garbay-Jaureguiberry C; Lambert B; Le Pecq JB; Roques BP J Med Chem; 1988 May; 31(5):1021-6. PubMed ID: 3283364 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and biological activity of new dimers in the 7H-pyrido[4,3-c] carbazole antitumor series. Garbay-Jaureguiberry C; Barsi MC; Jacquemin-Sablon A; Le Pecq JB; Roques BP J Med Chem; 1992 Jan; 35(1):72-81. PubMed ID: 1732535 [TBL] [Abstract][Full Text] [Related]
5. Modulation of the antitumor activity by methyl substitutions in the series of 7H-pyridocarbazole monomers and dimers. Léon P; Garbay-Jaureguiberry C; Barsi MC; Le Pecq JB; Roques BP J Med Chem; 1987 Nov; 30(11):2074-80. PubMed ID: 3669015 [TBL] [Abstract][Full Text] [Related]
6. Rational design of bis-intercalating drugs as antitumour agents: importance of rigidity in the linking chain. Garbay-Jaureguiberry C; Esnault C; Delepierre M; Laugaa P; Laalami S; Le Pecq JB; Roques BP Drugs Exp Clin Res; 1987; 13(6):353-7. PubMed ID: 3652924 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of 11H-pyridocarbazoles and derivatives. Comparison of their DNA binding and antitumor activity with those of 6H- and 7H-pyridocarbazoles. Lescot E; Muzard G; Markovits J; Belleney J; Roques BP; Le Pecq JB J Med Chem; 1986 Sep; 29(9):1731-7. PubMed ID: 3746819 [TBL] [Abstract][Full Text] [Related]
8. Relationship between the size and position of substituents on 7H-pyrido[4,3-c]carbazole monomers and dimers and their DNA binding and anti-tumor properties. Léon P; Garbay-Jaureguiberry C; Le Pecq JB; Roques BP Anticancer Drug Des; 1988 Jun; 3(1):1-13. PubMed ID: 3382504 [TBL] [Abstract][Full Text] [Related]
9. Geometry of the antitumor drug ditercalinium bisintercalated into d(CpGpCpG)2 by 1H NMR. Delbarre A; Delepierre M; Garbay C; Igolen J; Le Pecq JB; Roques BP Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2155-9. PubMed ID: 3470783 [TBL] [Abstract][Full Text] [Related]
10. Effects of new antitumor bifunctional intercalators derived from 7H-pyridocarbazole on sensitive and resistant L 1210 cells. Esnault C; Roques BP; Jacquemin-Sablon A; Le Pecq JB Cancer Res; 1984 Oct; 44(10):4355-60. PubMed ID: 6467197 [TBL] [Abstract][Full Text] [Related]
11. DNA bis-intercalators as new anti-tumour agents: modulation of the anti-tumour activity by the linking chain rigidity in the ditercalinium series. Garbay-Jaureguiberry C; Laugâa P; Delepierre M; Laalami S; Muzard G; Le Pecq JB; Roques BP Anticancer Drug Des; 1987 Apr; 1(4):323-35. PubMed ID: 3450302 [TBL] [Abstract][Full Text] [Related]
12. Acridine dimers: influence of the intercalating ring and of the linking-chain nature on the equilibrium and kinetic DNA-binding parameters. Markovits J; Garbay-Jaureguiberry C; Roques BP; Le Pecq JB Eur J Biochem; 1989 Mar; 180(2):359-66. PubMed ID: 2924770 [TBL] [Abstract][Full Text] [Related]
14. 1H and 31P nuclear magnetic resonance studies of the differences in DNA deformation induced by anti-tumoral 7H-pyrido[4,3-c]carbazole dimers. Delepierre M; Maroun R; Garbay-Jaureguiberry C; Igolen J; Roques BP J Mol Biol; 1989 Nov; 210(1):211-28. PubMed ID: 2585517 [TBL] [Abstract][Full Text] [Related]
15. Potential antitumor agents. II. Lappin intramolecular cyclization of diethyl 3-carbazolylaminomethylenemalonate: a structure assignment. Corelli F; Massa S; Stefancich G; Artico M; Silvestri R Farmaco Sci; 1987 Sep; 42(9):641-7. PubMed ID: 3691789 [TBL] [Abstract][Full Text] [Related]
17. Antitumor amino-substituted pyrido[3',4':4,5]pyrrolo[2,3-g]isoquinolines and pyrido[4,3-b]carbazole derivatives: synthesis and evaluation of compounds resulting from new side chain and heterocycle modifications. Rivalle C; Wendling F; Tambourin P; Lhoste JM; Bisagni E; Chermann JC J Med Chem; 1983 Feb; 26(2):181-5. PubMed ID: 6827534 [TBL] [Abstract][Full Text] [Related]
18. Syntheses and in vitro evaluation of water-soluble "cationic metalloporphyrin-ellipticine" molecules having a high affinity for DNA. Ding L; Etemad-Moghadam G; Cros S; Auclair C; Meunier B J Med Chem; 1991 Mar; 34(3):900-6. PubMed ID: 2002470 [TBL] [Abstract][Full Text] [Related]
19. A new series of ellipticine derivatives (1-(alkylamino)-9-methoxyellipticine). Synthesis, DNA binding, and biological properties. Larue L; Rivalle C; Muzard G; Paoletti C; Bisagni E; Paoletti J J Med Chem; 1988 Oct; 31(10):1951-6. PubMed ID: 3172128 [TBL] [Abstract][Full Text] [Related]
20. DNA binding, cytotoxicity and inhibitory effect on RNA synthesis of two new 1-nitro-9-aminoacridine dimers. Markovits J; Wilmańska D; Lescot E; Studzian K; Szmigiero L; Gniazdowski M Chem Biol Interact; 1989; 70(1-2):73-87. PubMed ID: 2472225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]