These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 7453800)

  • 1. The structure of histone H1 and its location in chromatin.
    Allan J; Hartman PG; Crane-Robinson C; Aviles FX
    Nature; 1980 Dec; 288(5792):675-9. PubMed ID: 7453800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of histone H1 and non-structured domains of core histones in maintaining the orientation of nucleosomes within the chromatin fiber.
    Makarov VL; Dimitrov SI; Tsaneva IR; Pashev IG
    Biochem Biophys Res Commun; 1984 Aug; 122(3):1021-7. PubMed ID: 6477546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chromatin of sea urchin sperm.
    Puigdomenech P; Romero MC; Allan J; Sautière P; Giancotti V; Crane-Robinson C
    Biochim Biophys Acta; 1987 Jan; 908(1):70-80. PubMed ID: 3801486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units.
    Song F; Chen P; Sun D; Wang M; Dong L; Liang D; Xu RM; Zhu P; Li G
    Science; 2014 Apr; 344(6182):376-80. PubMed ID: 24763583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reassociation of histone H1 with nucleosomes.
    Nelson PP; Albright SC; Wiseman JM; Garrard WT
    J Biol Chem; 1979 Nov; 254(22):11751-60. PubMed ID: 500671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lysine-rich protein functions as an H1 histone in Dictyostelium discoideum chromatin.
    Parish RW; Schmidlin S
    Nucleic Acids Res; 1985 Jan; 13(1):15-30. PubMed ID: 3923431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A triple helix model for the structure of chromatin fiber.
    Makarov V; Dimitrov S; Smirnov V; Pashev I
    FEBS Lett; 1985 Feb; 181(2):357-61. PubMed ID: 3972115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron scatter and diffraction techniques applied to nucleosome and chromatin structure.
    Bradbury EM; Baldwin JP
    Cell Biophys; 1986 Dec; 9(1-2):35-66. PubMed ID: 2436800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium binding and conformational change of DNA in chromatin.
    Watanabe K; Iso K
    Biochemistry; 1984 Mar; 23(7):1376-83. PubMed ID: 6722098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin.
    Thoma F; Koller T; Klug A
    J Cell Biol; 1979 Nov; 83(2 Pt 1):403-27. PubMed ID: 387806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser Raman spectra of calf thymus chromatin and its constituents.
    Savoie R; Jutier JJ; Alex S; Nadeau P; Lewis PN
    Biophys J; 1985 Apr; 47(4):451-9. PubMed ID: 3986278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The footprint of chromosomal proteins HMG-14 and HMG-17 on chromatin subunits.
    Alfonso PJ; Crippa MP; Hayes JJ; Bustin M
    J Mol Biol; 1994 Feb; 236(1):189-98. PubMed ID: 8107104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleosome structure.
    McGhee JD; Felsenfeld G
    Annu Rev Biochem; 1980; 49():1115-56. PubMed ID: 6996562
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on the role and mode of operation of the very-lysine-rich histones in eukaryote chromatin. Effect of A and B site phosphorylation on the conformation and interaction of histone H1.
    Rattle HW; Langan TA; Danby SE; Bradbury EM
    Eur J Biochem; 1977 Dec; 81(3):499-505. PubMed ID: 598378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replicative conformation of parental nucleosomes: salt sensitivity of deoxyribonucleic acid-histone interaction and alteration of histone H1 binding.
    Schlaeger EJ
    Biochemistry; 1982 Jun; 21(13):3167-74. PubMed ID: 7104318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteases as structural probes for chromatin: the domain structure of histones.
    Böhm L; Crane-Robinson C
    Biosci Rep; 1984 May; 4(5):365-86. PubMed ID: 6375755
    [No Abstract]   [Full Text] [Related]  

  • 19. Influence of DNA topology and histone tails in nucleosome organization on pBR322 DNA.
    Buttinelli M; Leoni L; Sampaolese B; Savino M
    Nucleic Acids Res; 1991 Aug; 19(16):4543-9. PubMed ID: 1886776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetry and polarity of nucleosomes in chicken erythrocyte chromatin.
    Satchwell SC; Travers AA
    EMBO J; 1989 Jan; 8(1):229-38. PubMed ID: 2714251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.