These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [Active transport of sodium through human erythrocyte membranes. Contribution of the enzyme kinetics]. Guérin H; Jallet P; Laget P Nouv Rev Fr Hematol; 1969; 9(6):873-6. PubMed ID: 4245045 [No Abstract] [Full Text] [Related]
4. Energy coupling in secondary active transport. West IC Biochim Biophys Acta; 1980 May; 604(1):91-126. PubMed ID: 6248113 [No Abstract] [Full Text] [Related]
5. Analysis of a model for active transport. Hill TL Proc Natl Acad Sci U S A; 1970 Feb; 65(2):409-16. PubMed ID: 5263773 [TBL] [Abstract][Full Text] [Related]
7. Sodium-calcium exchange across the synaptic plasma membrane. Gill DL; Ueda T; Chueh SH Ann N Y Acad Sci; 1985; 456():250-3. PubMed ID: 2418728 [No Abstract] [Full Text] [Related]
8. Contribution of Na(+)-dependent and ATP-dependent Ca2+ transport to smooth muscle calcium homeostasis. Cooney RA; Honeyman TW; Scheid CR Ann N Y Acad Sci; 1991; 639():558-60. PubMed ID: 1785883 [No Abstract] [Full Text] [Related]
11. The reversal potential for an electrogenic sodium pump: a method for determining the free energy of ATP breakdown? Chapman JB; Johnson EA J Gen Physiol; 1978 Sep; 72(3):403-8. PubMed ID: 702114 [No Abstract] [Full Text] [Related]
12. Mechanisms of Na(+)-glucose cotransport. Wright EM; Loo DD; Panayotova-Heiermann M; Boorer KJ Biochem Soc Trans; 1994 Aug; 22(3):646-50. PubMed ID: 7821655 [No Abstract] [Full Text] [Related]
13. Sodium cotransport systems and the membrane potential difference. Eddy AA Ann N Y Acad Sci; 1985; 456():51-62. PubMed ID: 2418734 [TBL] [Abstract][Full Text] [Related]
14. Modified transport substrates as probes for intramembrane gradients. Christensen HN; De Cespedes C; Handlogten ME; Ronquist G Ann N Y Acad Sci; 1974 Feb; 227():355-79. PubMed ID: 4133305 [No Abstract] [Full Text] [Related]
15. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Ames GF Annu Rev Biochem; 1986; 55():397-425. PubMed ID: 3527048 [No Abstract] [Full Text] [Related]
16. Primary and secondary transport of cations in bacteria. Harold FM; Kakinuma Y Ann N Y Acad Sci; 1985; 456():375-83. PubMed ID: 2418733 [No Abstract] [Full Text] [Related]
17. Mechanism of ATP free-energy transfer and utilization in (Na,K)-ATPase transport function. Dittrich F; Schön R; Repke KR Acta Biol Med Ger; 1974; 33(1):K17-25. PubMed ID: 4278447 [No Abstract] [Full Text] [Related]
18. Thermodynamic evaluation of flip-flop mechanism for transport- and ATP-synthesis function of (Na,K)-ATPase. Schön R; Dittrich F; Repke KR Acta Biol Med Ger; 1974; 33(1):K9-16. PubMed ID: 4278821 [No Abstract] [Full Text] [Related]
19. Several topics concerning Na,K-ATPase. Nakao M Life Sci; 1974 Dec; 15(11):1849-59. PubMed ID: 4378099 [No Abstract] [Full Text] [Related]
20. Active transport of cations across biological membranes. Stein WD; Eilam Y; Lieb WR Ann N Y Acad Sci; 1974 Feb; 227():328-36. PubMed ID: 4275122 [No Abstract] [Full Text] [Related] [Next] [New Search]