These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 7455371)
1. Minimizing occupational exposure to pesticides: recent developments in methodology for monitoring pesticide metabolites in human urine. Bradway DE; Lores EM; Edgerton TR Residue Rev; 1980; 75():51-65. PubMed ID: 7455371 [No Abstract] [Full Text] [Related]
2. Improved analysis of dialkylphosphates in urine using strong anion exchange disk extraction and in-vial derivatization. Lin WC; Hsieh CY; Chang HY J Sep Sci; 2007 Jun; 30(9):1326-33. PubMed ID: 17623475 [TBL] [Abstract][Full Text] [Related]
3. Development of a strategic approach for comprehensive detection of organophosphate pesticide metabolites in urine: Extrapolation of cadusafos and prothiofos metabolomics data of mice to humans. Nomasa K; Oya N; Ito Y; Terajima T; Nishino T; Mohanto NC; Sato H; Tomizawa M; Kamijima M J Occup Health; 2021 Jan; 63(1):e12218. PubMed ID: 33779022 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous assessment of phenolic metabolites in human urine for a specific biomonitoring of exposure to organophosphate and carbamate pesticides. Denghel H; Göen T Toxicol Lett; 2018 Dec; 298():33-41. PubMed ID: 30071243 [TBL] [Abstract][Full Text] [Related]
5. A rapid, cost-effective method for analyzing organophosphorus pesticide metabolites in human urine for counter-terrorism response. Weerasekera G; Smith KD; Needham LL; Barr DB J Anal Toxicol; 2008; 32(1):106-15. PubMed ID: 18269802 [TBL] [Abstract][Full Text] [Related]
6. Exploring Associations Between Postural Balance and Levels of Urinary Organophosphorus Pesticide Metabolites. Kim S; Nussbaum MA; Laurienti PJ; Chen H; Quandt SA; Barr DB; Arcury TA J Occup Environ Med; 2018 Feb; 60(2):174-179. PubMed ID: 29023345 [TBL] [Abstract][Full Text] [Related]
7. Investigation of associations between exposures to pesticides and testosterone levels in Thai farmers. Panuwet P; Ladva C; Barr DB; Prapamontol T; Meeker JD; D'Souza PE; Maldonado H; Ryan PB; Robson MG Arch Environ Occup Health; 2018 Jul; 73(4):205-218. PubMed ID: 28901838 [TBL] [Abstract][Full Text] [Related]
8. Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine. Davis MD; Wade EL; Restrepo PR; Roman-Esteva W; Bravo R; Kuklenyik P; Calafat AM J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Jun; 929():18-26. PubMed ID: 23648311 [TBL] [Abstract][Full Text] [Related]
9. Metabolic studies with Zytron herbicide in a lactating cow. St John LE; Lisk DJ J Agric Food Chem; 1970; 18(1):125-7. PubMed ID: 5535663 [No Abstract] [Full Text] [Related]
10. Recent applications of mass spectrometry and combined gas chromatography-mass spectrometry to pesticide residue analysis. Biros FJ Residue Rev; 1971; 40():1-63. PubMed ID: 4942428 [No Abstract] [Full Text] [Related]
11. [Occupational and environmental exposure to anilide and dicarboximide pesticides]. Vitelli N; Chiodini A; Colosio C; De Paschale G; Somaruga C; Turci R; Minoia C; Brambilla G; Colombi A G Ital Med Lav Ergon; 2007; 29(3 Suppl):276-7. PubMed ID: 18409684 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of 3-trifluoromethyl-4-nitrophenol in the rat. Lech JJ Toxicol Appl Pharmacol; 1971 Oct; 20(2):216-26. PubMed ID: 5133253 [No Abstract] [Full Text] [Related]
13. Simultaneous determination of eight metabolites of organophosphate and pyrethroid pesticides in urine. Guo XY; Sun LS; Huang MY; Xu WL; Wang Y; Wang N J Environ Sci Health B; 2017 Jan; 52(1):1-9. PubMed ID: 27629156 [TBL] [Abstract][Full Text] [Related]
14. Development of an ion-pair liquid chromatography-high resolution mass spectrometry method for determination of organophosphate pesticide metabolites in large-scale biomonitoring studies. Cequier E; Sakhi AK; Haug LS; Thomsen C J Chromatogr A; 2016 Jul; 1454():32-41. PubMed ID: 27264744 [TBL] [Abstract][Full Text] [Related]
15. High-throughput sample preparation for the quantitation of acephate, methamidophos, omethoate, dimethoate, ethylenethiourea, and propylenethiourea in human urine using 96-well-plate automated extraction and high-performance liquid chromatography-tandem mass spectrometry. Jayatilaka NK; Angela Montesano M; Whitehead RD; Schloth SJ; Needham LL; Barr DB Arch Environ Contam Toxicol; 2011 Jul; 61(1):59-67. PubMed ID: 20878153 [TBL] [Abstract][Full Text] [Related]
16. Electron capture gas chromatographic analysis of the amine metabolites of pesticides: derivatization of anilines. Bradway DE; Shafik T J Chromatogr Sci; 1977 Aug; 15(8):322-8. PubMed ID: 893651 [TBL] [Abstract][Full Text] [Related]
17. Association Between Organophosphate Pesticide Exposure and Thyroid Hormones in Pregnant Women. Wang Y; Chen L; Wang C; Hum Y; Gao Y; Zhou Y; Shi R; Zhang Y; Kamijima M; Ueyama J; Tian Y Epidemiology; 2017 Oct; 28 Suppl 1():S35-S40. PubMed ID: 29028673 [TBL] [Abstract][Full Text] [Related]
18. Assessment of long-term and recent pesticide exposure among rural school children in Nicaragua. Rodríguez T; van Wendel de Joode B; Lindh CH; Rojas M; Lundberg I; Wesseling C Occup Environ Med; 2012 Feb; 69(2):119-25. PubMed ID: 21725072 [TBL] [Abstract][Full Text] [Related]
19. Efficiency control of dietary pesticide intake reduction by human biomonitoring. Göen T; Schmidt L; Lichtensteiger W; Schlumpf M Int J Hyg Environ Health; 2017 Mar; 220(2 Pt A):254-260. PubMed ID: 27939065 [TBL] [Abstract][Full Text] [Related]
20. Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain. Roca M; Miralles-Marco A; Ferré J; Pérez R; Yusà V Environ Res; 2014 May; 131():77-85. PubMed ID: 24657944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]