These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 745597)

  • 1. Phosphorylation of the Ca2+ pump intermediate in intact red cells, isolated membranes and inside-out vesicles.
    Szász I; Hasitz M; Sarkadi B; Gárdos G
    Mol Cell Biochem; 1978 Dec; 22(2-3):147-52. PubMed ID: 745597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of divalent metal ions on the calcium pump and membrane phosphorylation in human red cells.
    Enyedi A; Sarkadi B; Nyers A; Gárdos G
    Biochim Biophys Acta; 1982 Aug; 690(1):41-9. PubMed ID: 6812632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lanthanum on calcium-dependent phenomena in human red cells.
    Szász I; Sarkadi B; Schubert A; Gárdos G
    Biochim Biophys Acta; 1978 Sep; 512(2):331-40. PubMed ID: 152127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The site of action of La3+ in the reaction cycle of the human red cell membrane Ca2+-pump ATPase.
    Luterbacher S; Schatzmann HJ
    Experientia; 1983 Mar; 39(3):311-2. PubMed ID: 6130967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Ca2+-sensitive K+ transport in inside-out red cell membrane vesicles.
    Szebeni J
    Acta Biochim Biophys Acad Sci Hung; 1981; 16(1-2):77-82. PubMed ID: 6278807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory interaction between calmodulin and ATP on the red cell Ca2+ pump.
    Muallem S; Karlish SJ
    Biochim Biophys Acta; 1980 Apr; 597(3):631-6. PubMed ID: 6445755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin-dependent spectrin kinase activity in resealed human erythrocyte ghosts.
    Nelson MJ; Daleke DL; Huestis WH
    Biochim Biophys Acta; 1982 Apr; 686(2):182-8. PubMed ID: 6805511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane phosphorylation in intact human erythrocytes.
    Reimann B; Klatt D; Tsamaloukas AG; Maretzki D
    Acta Biol Med Ger; 1981; 40(4-5):487-93. PubMed ID: 7315094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-steady-state kinetic study of the mechanism of inhibition of the plasma membrane Ca(2+)-ATPase by lanthanum.
    Herscher CJ; Rega AF
    Biochemistry; 1996 Nov; 35(47):14917-22. PubMed ID: 8942656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between phosphorylation and adenosine triphosphate-dependent Ca2+ binding of swine and bovine erythrocyte membranes.
    Kawaguchi T; Konishi K
    Biochim Biophys Acta; 1980 Apr; 597(3):577-86. PubMed ID: 6246940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation and deactivation kinetics of Ca transport in inside-out erythrocyte membrane vesicles.
    Macintyre JD; Gunn RB
    Biochim Biophys Acta; 1981 Jun; 644(2):351-62. PubMed ID: 7260078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats.
    Devynck MA; Pernollet MG; Nunez AM; Meyer P
    Hypertension; 1981; 3(4):397-403. PubMed ID: 6458563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the red blood cell Ca2+-pump: an estimate of stoichiometry.
    Larsen FL; Hinds TR; Vincenzi FF
    J Membr Biol; 1978 Jul; 41(4):361-76. PubMed ID: 691040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of (Ca2+ + Mg2+) adenosine triphosphatase activity and calcium transport in boar sperm plasma membrane vesicles and their relation to phosphorylation of plasma membrane proteins.
    Ashraf M; Peterson RN; Russell LD
    Biol Reprod; 1984 Dec; 31(5):1061-71. PubMed ID: 6151405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells.
    Sarkadi B; Szász I; Gerlóczy A; Gárdos G
    Biochim Biophys Acta; 1977 Jan; 464(1):93-107. PubMed ID: 137747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation and dephosphorylation of the Ca2+ pump of human red cells in the presence of monovalent cations.
    Larocca JN; Rega AF; Garrahan PJ
    Biochim Biophys Acta; 1981 Jul; 645(1):10-6. PubMed ID: 6455158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the mechanism of regulation of the red-cell Ca2+ pump by calmodulin and ATP.
    Muallem S; Karlish SJ
    Biochim Biophys Acta; 1981 Sep; 647(1):73-86. PubMed ID: 6117318
    [No Abstract]   [Full Text] [Related]  

  • 18. On the interrelation between calmodulin and EGTA in the regulation of the affinity to Ca2+ and the maximal activity of the erythrocyte-membrane calcium pump.
    Orlov SN; Pokudin NI; Reznikova MB; Rjazhsky GG; Postnov YV
    Eur J Biochem; 1983 May; 132(2):315-9. PubMed ID: 6404633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ transport activities of inside-out vesicles prepared from density-separated erythrocytes from rat and human.
    Seidler NW; Swislocki NI
    Mol Cell Biochem; 1991 Jul; 105(2):159-69. PubMed ID: 1833624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton fluxes associated with the Ca pump in human red blood cells.
    Milanick MA
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C552-62. PubMed ID: 2156439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.