These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 745605)

  • 1. [Simulation of DNA conformation possibilities by means of nonbonded interaction energy calculations of complementary dinucleoside phosphate complexes].
    Poltev VI; Milova LA; Zhorov BS; Govyrin VA
    Mol Biol (Mosk); 1978; 12(6):1319-28. PubMed ID: 745605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of conformational possibilities of DNA via calculation of nonbonded interactions of complementary dinucleoside phosphate complexes.
    Poltev VI; Milova LA; Zhorov BS; Govyrin VA
    Biopolymers; 1981 Jan; 20(1):1-15. PubMed ID: 33327677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Possible conformations of nucleic acid fragments containing the base pair guanine:uracil].
    Poltev VI; Zhorov BS
    Biofizika; 1982; 27(2):320-2. PubMed ID: 7074158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interactions of caffeine with DNA double helix fragments. Molecular mechanics simulation].
    Grokhlina TI; Polteva NA; Gonzalez E; Deriabina AS; Polteva VI
    Biofizika; 2005; 50(5):818-23. PubMed ID: 16248156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of the flexibility of complementary dinucleoside phosphates by the Monte-Carlo method].
    Ul'ianov NB; Zhurkin VB
    Mol Biol (Mosk); 1982; 16(5):1075-85. PubMed ID: 6958972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Anisotropic flexibility of DNA depends on the base sequence. Conformation calculations of double-stranded tetranucleotides AAAA:TTTT, (AATT)2, (TTAA)2, GGGG:CCCC, (GGCC)2, (CCGG)2].
    Ul'ianov NB; Zhurkin VB
    Mol Biol (Mosk); 1984; 18(6):1664-85. PubMed ID: 6521743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA stretching and compression: large-scale simulations of double helical structures.
    Kosikov KM; Gorin AA; Zhurkin VB; Olson WK
    J Mol Biol; 1999 Jun; 289(5):1301-26. PubMed ID: 10373369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
    Packer MJ; Hunter CA
    J Mol Biol; 1998 Jul; 280(3):407-20. PubMed ID: 9665845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of DNA structure from sequence: a build-up technique.
    Hingerty BE; Figueroa S; Hayden TL; Broyde S
    Biopolymers; 1989 Jul; 28(7):1195-222. PubMed ID: 2775836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Semiempirical calculation of the relation of the interaction energy between complementary pairs of nitrogenous bases to nucleic acid conformational parameters].
    KhutorskiÄ­ VE; Poltev VI
    Biofizika; 1975; 20(1):15-19. PubMed ID: 1111608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Method of conformational calculations of large fragments of nucleic acids. IV. Comparative calculations of dinucleotides by the fragment and atom-atom methods].
    Vorob'ev IuN
    Mol Biol (Mosk); 1983; 17(2):271-8. PubMed ID: 6574311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single 2'-hydroxyl group converts B-DNA to A-DNA. Crystal structure of the DNA-RNA chimeric decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G-C base-paired quadruplet.
    Ban C; Ramakrishnan B; Sundaralingam M
    J Mol Biol; 1994 Feb; 236(1):275-85. PubMed ID: 7508984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes.
    Topham CM; Smith JC
    J Mol Biol; 1999 Oct; 292(5):1017-38. PubMed ID: 10512700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational characteristics of mixed sugar puckered deoxydinucleoside triphosphate units d-pCpGp and d-pGpCp from energy minimization studies.
    Ponnuswamy PK; Anukanth A
    J Biomol Struct Dyn; 1989 Feb; 6(4):781-800. PubMed ID: 2619940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interaction of nucleic acid bases with water molecules and formation of mismatched nucleotide pairs].
    Poltev VI; ShteÄ­nberg SV
    Mol Biol (Mosk); 1987; 21(3):704-13. PubMed ID: 3657771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory.
    von Feilitzsch T; Tuma J; Neubauer H; Verdier L; Haselsberger R; Feick R; Gurzadyan G; Voityuk AA; Griesinger C; Michel-Beyerle ME
    J Phys Chem B; 2008 Jan; 112(3):973-89. PubMed ID: 18163608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational characteristics of the dimeric subunits of DNA from energy minimization studies. Mixed sugar-puckered dApdA, dApdT, dTpdA, and dTpdT.
    Ponnuswamy PK; Thiyagarajan P
    Biophys J; 1981 Sep; 35(3):731-52. PubMed ID: 6944112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of atomic structure from sequence for double helical DNA oligomers.
    Farwer J; Packer MJ; Hunter CA
    Biopolymers; 2006 Jan; 81(1):51-61. PubMed ID: 16184626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical studies of cis-Pt(II)-diammine binding to duplex DNA.
    McCarthy SL; Hinde RJ; Miller KJ; Anderson JS; Basch H; Krauss M
    Biopolymers; 1990; 29(4-5):823-36. PubMed ID: 2383646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.