These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7457610)

  • 21. Calbindin-D in peripheral nerve cells is vitamin D and calcium dependent.
    Lee YS; Taylor AN; Reimers TJ; Edelstein S; Fullmer CS; Wasserman RH
    Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7344-8. PubMed ID: 3478696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular and transport effects of 1,25-dihydroxyvitamin D3 in rat duodenum.
    Bronner F; Lipton J; Pansu D; Buckley M; Singh R; Miller A
    Fed Proc; 1982 Jan; 41(1):61-5. PubMed ID: 6895734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-dependent translocation of calbindin-D28k from intestine to blood.
    Lee YS; Reimers TJ; Cowan RG; Fullmer CS; Wasserman RH
    Arch Biochem Biophys; 1988 Feb; 261(1):27-34. PubMed ID: 3341776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations of duodenal vitamin D-dependent calcium-binding protein content and calcium uptake in brush border membrane vesicles in aged Wistar rats: role of 1,25-dihydroxyvitamin D3.
    Liang CT; Barnes J; Sacktor B; Takamoto S
    Endocrinology; 1991 Apr; 128(4):1780-4. PubMed ID: 2004601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced nonsaturable calcium transport in the jejunum of rats during lactation, but not during pregnancy.
    Boass A; Toverud SU
    J Bone Miner Res; 1997 Oct; 12(10):1577-83. PubMed ID: 9333118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intestinal calcium absorption in the aged rat: evidence of intestinal resistance to 1,25(OH)2 vitamin D.
    Wood RJ; Fleet JC; Cashman K; Bruns ME; Deluca HF
    Endocrinology; 1998 Sep; 139(9):3843-8. PubMed ID: 9724038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theophylline inhibits transcellular Ca transport in intestine and Ca binding by CaBP.
    Pansu D; Bellaton C; Roche C; Bronner F
    Am J Physiol; 1989 Dec; 257(6 Pt 1):G935-43. PubMed ID: 2610263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of age on intestinal calcium absorption and adaptation to dietary calcium.
    Armbrecht HJ; Zenser TV; Bruns ME; Davis BB
    Am J Physiol; 1979 Jun; 236(6):E769-74. PubMed ID: 443430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The possible role of calcium-binding protein induced by 1 alpha,25-dihydroxyvitamin D3 in the intestinal calcium transport mechanism.
    Shinki T; Takahashi N; Kawate N; Suda T
    Endocrinology; 1982 Nov; 111(5):1546-51. PubMed ID: 6897035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renal and intestinal calcium transport: roles of vitamin D and vitamin D-dependent calcium binding proteins.
    Johnson JA; Kumar R
    Semin Nephrol; 1994 Mar; 14(2):119-28. PubMed ID: 8177979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of fructo-oligosaccharide supplementation in soya beverage on the intestinal absorption of calcium and iron in newly weaned rats.
    de Lima Correia Silva M; da Graça Leite Speridião P; Oyama LM; de Morais MB
    Br J Nutr; 2018 Dec; 120(12):1338-1348. PubMed ID: 30499425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of intestinal calcium transport during maturation in rats.
    Ghishan FK; Parker P; Nichols S; Hoyumpa A
    Pediatr Res; 1984 Mar; 18(3):235-9. PubMed ID: 6728555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Duodenal calcium binding protein and active calcium transport in rats: are they functionally related?
    Chabanis S; Hanrotel C; Duchambon P; Banide H; Kubrusly M; Aymard P; Lacour B; Drüeke T
    Nephrol Dial Transplant; 1994; 9(10):1402-7. PubMed ID: 7816252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for in vivo upregulation of the intestinal vitamin D receptor during dietary calcium restriction in the rat.
    Favus MJ; Mangelsdorf DJ; Tembe V; Coe BJ; Haussler MR
    J Clin Invest; 1988 Jul; 82(1):218-24. PubMed ID: 2839546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Intestinal absorption of calcium and its regulation. Tissue, membrane and molecular events].
    Pansu D; Bellaton C; Roche C
    Diabete Metab; 1984 May; 10(2):106-20. PubMed ID: 6378683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dietary short-chain fructooligosaccharides increase calbindin-D9k levels only in the large intestine in rats independent of dietary calcium deficiency or serum 1,25 dihydroxy vitamin D levels.
    Takasaki M; Inaba H; Ohta A; Motohashi Y; Sakai K; Morris H; Sakuma K
    Int J Vitam Nutr Res; 2000 Sep; 70(5):206-13. PubMed ID: 11068700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Luminal calcium concentration controls intestinal calcium absorption by modification of intestinal alkaline phosphatase activity.
    Brun LR; Brance ML; Rigalli A
    Br J Nutr; 2012 Jul; 108(2):229-33. PubMed ID: 22018098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theophylline inhibits active Ca transport in rat intestine by inhibiting Ca binding by CaBP.
    Pansu D; Bellaton C; Roche C; Bronner F
    Prog Clin Biol Res; 1988; 252():115-20. PubMed ID: 3347614
    [No Abstract]   [Full Text] [Related]  

  • 39. The role of calcium binding protein in the mechanism of action of cholecalciferol (vitamin D3).
    Hamilton JW; Holdsworth ES
    Aust J Exp Biol Med Sci; 1975 Dec; 53(6):469-78. PubMed ID: 180950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct, tissue-specific regulation of vitamin D receptor in the intestine, kidney, and skin by dietary calcium and vitamin D.
    Zineb R; Zhor B; Odile W; Marthe RR
    Endocrinology; 1998 Apr; 139(4):1844-52. PubMed ID: 9528970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.