These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7459320)

  • 1. Formation of hybrid luciferases from subunits of different species of Photobacterium.
    Ruby EG; Hastings JW
    Biochemistry; 1980 Oct; 19(22):4989-93. PubMed ID: 7459320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature.
    Holzman TF; Baldwin TO
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6363-7. PubMed ID: 6161366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interspecific luciferase beta subunit hybrids between Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi.
    Almashanu S; Gendler I; Hadar R; Kuhn J
    Protein Eng; 1996 Sep; 9(9):803-9. PubMed ID: 8888147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism.
    Meighen EA; Bartlet I
    J Biol Chem; 1980 Dec; 255(23):11181-7. PubMed ID: 6969259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent structure of subunits of bacterial luciferase: NH2-terminal sequence demonstrates subunit homology.
    Baldwin TO; Ziegler MM; Powers DA
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4887-9. PubMed ID: 315557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between luciferases from various species of bioluminescent bacteria and the yellow fluorescent protein of Vibrio fischeri strain Y-1.
    Daubner SC; Baldwin TO
    Biochem Biophys Res Commun; 1989 Jun; 161(3):1191-8. PubMed ID: 2742584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and properties of luciferase from Photobacterium phosphoreum.
    Ferri SR; Soly RR; Szittner RB; Meighen EA
    Biochem Biophys Res Commun; 1991 Apr; 176(1):541-8. PubMed ID: 2018544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of phosphate on the structure and stability of the luciferases from Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum.
    Holzman TF; Baldwin TO
    Biochem Biophys Res Commun; 1980 Jun; 94(4):1199-206. PubMed ID: 6967319
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation of active bacterial luciferase between interspecific subunits in vivo.
    Almashanu S; Tuby A; Hadar R; Einy R; Kuhn J
    J Biolumin Chemilumin; 1995; 10(3):157-67. PubMed ID: 7676858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of bacterial luciferases by affinity chromatography on 2,2-diphenylpropylamine-Sepharose: phosphate-mediated binding to an immobilized substrate analogue.
    Holzman TF; Baldwin TO
    Biochemistry; 1982 Nov; 21(24):6194-201. PubMed ID: 6983889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on luciferase from Photobacterium phosphoreum. IV. Preparation and properties of stripped luciferase.
    Yoshida K; Nakamura T
    J Biochem; 1973 Nov; 74(5):915-22. PubMed ID: 4770374
    [No Abstract]   [Full Text] [Related]  

  • 12. Functional differences of the nonidentical subunits of bacterial luciferase. Properties of hybrids of native and chemically modified bacterial luciferase.
    Meighen EA; Nicoli MZ; Hastings JW
    Biochemistry; 1971 Oct; 10(22):4069-73. PubMed ID: 5161031
    [No Abstract]   [Full Text] [Related]  

  • 13. Preparation of P-flavin-bound and P-flavin-free luciferase and P-flavin-bound beta-subunit of luciferase from Photobacterium phosphoreum.
    Kasai S
    J Biochem; 1994 Apr; 115(4):670-4. PubMed ID: 8089082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Nucleotide sequence of genes for alpha- and beta-subunits of luciferase from Photobacterium leiognathi].
    Illarionov BA; Protopopova MV; Karginov VA; Mertvetsov NP; Gitel'zon II
    Bioorg Khim; 1988 Mar; 14(3):412-5. PubMed ID: 3382442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.
    Valkova N; Szittner R; Meighen EA
    Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Isolation and purification of bacterial luciferase from Photobacterium fischeri for analytical purposes].
    Shumikhin VN; Danilov VS; Malkov IuA; Egorov NS
    Biokhimiia; 1980 Sep; 45(9):1576-81. PubMed ID: 7248358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural distinctions of fast and slow bacterial luciferases revealed by phylogenetic analysis.
    Deeva AA; Temlyakova EA; Sorokin AA; Nemtseva EV; Kratasyuk VA
    Bioinformatics; 2016 Oct; 32(20):3053-3057. PubMed ID: 27354698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization.
    Reichelt JL; Baumann P; Baumann L
    Arch Microbiol; 1976 Oct; 110(1):101-20. PubMed ID: 1015934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteolytic inactivation of the luciferase from the luminous marine bacterium Beneckea harveyi.
    Baldwin TO; Hastings JW; Riley PL
    J Biol Chem; 1978 Aug; 253(16):5551-4. PubMed ID: 307551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on luciferase from Photobacterium phosphoreum. I. Purification and physiochemical properties.
    Nakamura T; Matsuda K
    J Biochem; 1971 Jul; 70(1):35-44. PubMed ID: 5562345
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.