These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7459720)

  • 21. Relation of the iron oxidizer, Thiobacillus ferrooxidans, to thiosulfate.
    COLMER AR
    J Bacteriol; 1962 Apr; 83(4):761-5. PubMed ID: 13880654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine-drainage.
    Wood TA; Murray KR; Burgess JG
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):560-5. PubMed ID: 11549038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the growth of Thiobacillus ferrooxidans. IV. Influence of monovalent metal cations on ferrous iron oxidation and uranium toxicity in growing cultures.
    Tuovinen OH; Kelly DP
    Arch Microbiol; 1974 Jul; 98(2):167-74. PubMed ID: 4847498
    [No Abstract]   [Full Text] [Related]  

  • 24. Strain variability and the effects of organic compounds on the growth of the chemolithotrophic bacterium Thiobacillus ferrooxidans.
    Frattini CJ; Leduc LG; Ferroni GD
    Antonie Van Leeuwenhoek; 2000 Jan; 77(1):57-64. PubMed ID: 10696879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process.
    Fournier D; Lemieux R; Couillard D
    Environ Pollut; 1998; 101(2):303-9. PubMed ID: 15093092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Isolation of transcription promoters from Thiobacillus ferrooxidans and T. acidophilus and its introduction by conjugation to T. intermedius].
    Metz C; Sánchez H; Venegas A
    Arch Biol Med Exp; 1990 Dec; 23(4):285-97. PubMed ID: 2134308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron.
    Collinet MN; Morin D
    Antonie Van Leeuwenhoek; 1990 May; 57(4):237-44. PubMed ID: 2191624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(III).
    Matsumoto N; Nakasono S; Ohmura N; Saiki H
    Biotechnol Bioeng; 1999 Sep; 64(6):716-21. PubMed ID: 10417221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans.
    Harahuc L; Lizama HM; Suzuki I
    Appl Environ Microbiol; 2000 Mar; 66(3):1031-7. PubMed ID: 10698768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds.
    Tuttle JH; Dugan PR
    Can J Microbiol; 1976 May; 22(5):719-30. PubMed ID: 6140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ferrous iron oxidation and uranium extraction by Thiobacillus ferrooxidans.
    Guay R; Silver M; Torma AE
    Biotechnol Bioeng; 1977 May; 19(5):727-40. PubMed ID: 857953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Base competition of DNA isolated from Thiobacillus ferrooxidans grown on different substrates.
    Guay R; Silver M; Torma AE
    Rev Can Biol; 1976 Jun; 35(2):61-7. PubMed ID: 981743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Nature of the sulfur-containing component and its function in Thiobacillus ferrooxidans].
    Karavaĭko GI; Gromova LA; Pereverzev NA
    Mikrobiologiia; 1983; 52(4):559-62. PubMed ID: 6645991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans.
    Malhotra S; Tankhiwale AS; Rajvaidya AS; Pandey RA
    Bioresour Technol; 2002 Dec; 85(3):225-34. PubMed ID: 12365488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures.
    Bacelar-Nicolau P; Johnson DB
    Appl Environ Microbiol; 1999 Feb; 65(2):585-90. PubMed ID: 9925586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability of copper tolerance in Thiobacillus ferrooxidans.
    Natarajan KA; Sudeesha K; Rao GR
    Antonie Van Leeuwenhoek; 1994; 66(4):303-6. PubMed ID: 7710276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Composition of a nutrient medium for the continuous cultivation of Thiobacillus ferrooxidans].
    Denisov GV; Kovrov BG; Trubachev IN; Gribovskaia IV; Stepen' AA
    Mikrobiologiia; 1980; 49(3):473-8. PubMed ID: 7402126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14 CO 2 -fixation and iron oxidation as measures of growth.
    Tuovinen OH; Kelly DP
    Arch Mikrobiol; 1973; 88(4):285-98. PubMed ID: 4684598
    [No Abstract]   [Full Text] [Related]  

  • 39. Sulfite oxidation by iron-grown cells of Thiobacillus ferrooxidans at pH 3 possibly involves free radicals, iron, and cytochrome oxidase.
    Harahuc L; Suzuki I
    Can J Microbiol; 2001 May; 47(5):424-30. PubMed ID: 11400733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans.
    Yamanaka T; Fukumori Y
    FEMS Microbiol Rev; 1995 Dec; 17(4):401-13. PubMed ID: 8845189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.