These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. A study of the reversibility of helix-coil transition in DNA. Perelroyzen MP; Lyamichev VI; Kalambet YuA ; Lyubchenko YuL ; Vologodskii AV Nucleic Acids Res; 1981 Aug; 9(16):4043-59. PubMed ID: 7301577 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the heat- and pressure-induced helix-coil transition of two DNA copolymers. Rayan G; Macgregor RB J Phys Chem B; 2005 Aug; 109(32):15558-65. PubMed ID: 16852973 [TBL] [Abstract][Full Text] [Related]
10. Sharp melting of polymer-DNA hybrids: an associative phase separation approach. Kudlay A; Gibbs JM; Schatz GC; Nguyen ST; de la Cruz MO J Phys Chem B; 2007 Feb; 111(7):1610-9. PubMed ID: 17256893 [TBL] [Abstract][Full Text] [Related]
11. Purification of closed circular lambda deoxyribonucleic acid and its sedimentation properties as a function of Sodium chloride concentration and ethidium binding. Hinton DM; Bode VC J Biol Chem; 1975 Feb; 250(3):1071-9. PubMed ID: 1089649 [TBL] [Abstract][Full Text] [Related]
12. Evidence for an intermediate with a single-strand break in the reaction catalyzed by the DNA untwisting enzyme. Champoux JJ Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3488-91. PubMed ID: 1068461 [TBL] [Abstract][Full Text] [Related]
13. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669 [TBL] [Abstract][Full Text] [Related]
14. Melting experiment concerning the topological structure of closed circular double-stranded DNA. Giacomoni PU Biopolymers; 1982 Jan; 21(1):117-29. PubMed ID: 6275927 [No Abstract] [Full Text] [Related]
15. Large-scale opening of A + T rich regions within supercoiled DNA molecules is suppressed by salt. Bowater RP; Aboul-ela F; Lilley DM Nucleic Acids Res; 1994 Jun; 22(11):2042-50. PubMed ID: 8029010 [TBL] [Abstract][Full Text] [Related]
16. [Why is the denaturation process of super-helical DNA so uncooperative?]. Belintsev BN; Gagua AV Mol Biol (Mosk); 1989; 23(1):52-60. PubMed ID: 2739649 [TBL] [Abstract][Full Text] [Related]
17. Mechanochemical study of NaDNA and NaDNA-netropsin fibers in ethanol-water and trifluoroethanol-water solutions. Song Z; Rupprecht A; Fritzsche H Biophys J; 1995 Mar; 68(3):1050-62. PubMed ID: 7756525 [TBL] [Abstract][Full Text] [Related]
18. The problems of eukaryotic and prokaryotic DNA packaging and in vivo conformation posed by superhelix density heterogeneity. Shure M; Pulleyblank DE; Vinograd J Nucleic Acids Res; 1977; 4(5):1183-205. PubMed ID: 197488 [TBL] [Abstract][Full Text] [Related]
19. Divalent metal ion effect on helix-coil transition of high molecular weight DNA in neutral and alkaline solutions. Sorokin VA; Valeev VA; Usenko EL; Andrushchenko VV Int J Biol Macromol; 2011 Mar; 48(2):369-74. PubMed ID: 21215771 [TBL] [Abstract][Full Text] [Related]
20. Counterion association with native and denatured nucleic acids: an experimental approach. Völker J; Klump HH; Manning GS; Breslauer KJ J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]