These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7460005)

  • 1. The capacity of lysosomes of cultured mammalian cells to accumulate acridine orange is destroyed aby hyperthermia.
    Haveman J
    Cell Tissue Res; 1980; 213(2):343-50. PubMed ID: 7460005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pH of the cytoplasm as an important factor in the survival of in vitro cultured malignant cells after hyperthermia. Effects of carbonylcyanide 3-chlorophenylhydrazone.
    Haveman J
    Eur J Cancer (1965); 1979 Oct; 15(10):1281-8. PubMed ID: 42545
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of energy in hyperthermia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation.
    Haveman J; Hahn GM
    J Cell Physiol; 1981 May; 107(2):237-41. PubMed ID: 7195908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysosomal acridine orange uptake in fibroblasts transformed by SV40 or human cytomegalovirus.
    RĂ©dai I; Halmy M
    Acta Microbiol Acad Sci Hung; 1980; 27(1):41-5. PubMed ID: 6251701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secretin dissipates red acridine orange fluorescence from pancreatic duct epithelium.
    Veel T; Buanes T; Grotmol T; Ostensen J; Raeder MG
    Acta Physiol Scand; 1991 Feb; 141(2):221-6. PubMed ID: 1904674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of pH on the survival after X-irradiation of cultured malignant cells. Effects of carbonylcyanide-3-chlorophenylhydrazone.
    Haveman J
    Int J Radiat Biol Relat Stud Phys Chem Med; 1980 Feb; 37(2):201-5. PubMed ID: 6966266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acridine orange as a fluorescent probe for lysosomal proton pump.
    Moriyama Y; Takano T; Ohkuma S
    J Biochem; 1982 Oct; 92(4):1333-6. PubMed ID: 6294070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of intracellular pH as a possible mechanism for killing cells in acidic regions of solid tumors: effects of carbonylcyanide-3-chlorophenylhydrazone.
    Newell KJ; Tannock IF
    Cancer Res; 1989 Aug; 49(16):4477-82. PubMed ID: 2743336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal pH of human neutrophil lysosomes.
    Styrt B; Klempner MS
    FEBS Lett; 1982 Nov; 149(1):113-6. PubMed ID: 6185362
    [No Abstract]   [Full Text] [Related]  

  • 10. Flow cytofluorometry of lysosomal acridine orange uptake by living cultured cells. Effect of trypsinization and starvation.
    Olsson M; Rundquist I; Brunk U
    Acta Pathol Microbiol Immunol Scand A; 1987 Jul; 95(4):159-65. PubMed ID: 3618227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of astroglial cell swelling on pH of acidic intracellular compartments.
    Busch GL; Wiesinger H; Gulbins E; Wagner HJ; Hamprecht B; Lang F
    Biochim Biophys Acta; 1996 Dec; 1285(2):212-8. PubMed ID: 8972705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pH and thermotolerance on the enhancement of X-ray induced inactivation of cultured mammalian cells by hyperthermia.
    Haveman J
    Int J Radiat Biol Relat Stud Phys Chem Med; 1983 Mar; 43(3):281-9. PubMed ID: 6601077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of hyperthermia-induced cytotoxicity upon ATP deprivation.
    Laval F; Michel S
    Cancer Lett; 1982 Jan; 15(1):61-5. PubMed ID: 7059963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photooxidative damage to lysosomes of cultured macrophages by acridine orange.
    Zdolsek JM; Olsson GM; Brunk UT
    Photochem Photobiol; 1990 Jan; 51(1):67-76. PubMed ID: 2304980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence response of acridine orange to changes in pH gradients across liposome membranes.
    Cools AA; Janssen LH
    Experientia; 1986 Aug; 42(8):954-6. PubMed ID: 3743722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysosome and phagosome stability in lethal cell injury. Morphologic tracer studies in cell injury due to inhibition of energy metabolism, immune cytolysis and photosensitization.
    Hawkins HK; Ericsson JL; Biberfeld P; Trump BF
    Am J Pathol; 1972 Aug; 68(2):255-8. PubMed ID: 4340333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative model for using acridine orange as a transmembrane pH gradient probe.
    Clerc S; Barenholz Y
    Anal Biochem; 1998 May; 259(1):104-11. PubMed ID: 9606150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of uncoupling by amiloride analogs.
    Davies K; Solioz M
    Biochemistry; 1992 Sep; 31(34):8055-8. PubMed ID: 1324725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of CFTR in lysosome acidification.
    Van Dyke RW; Root KV; Schreiber JH; Wilson JM
    Biochem Biophys Res Commun; 1992 Apr; 184(1):300-5. PubMed ID: 1373612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review. Acridine orange could be an innovative anticancer agent under photon energy.
    Kusuzaki K; Murata H; Matsubara T; Satonaka H; Wakabayashi T; Matsumine A; Uchida A
    In Vivo; 2007; 21(2):205-14. PubMed ID: 17436568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.