These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7460930)

  • 1. A novel chiral microenvironmental probe at the active site of trypsin. Extrinsic cotton effects of acyl-trypsin possessing an enantiomeric pair of chromophores.
    Nakayama H; Tanizawa K; Kanaoka Y; Witkop B
    Eur J Biochem; 1980 Nov; 112(2):403-9. PubMed ID: 7460930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates".
    Fujioka T; Tanizawa K; Kanaoka Y
    J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis by serine proteases and their zymogens. A study of acyl intermediates by circular dichroism.
    Kerr MA; Walsh KA; Neurath H
    Biochemistry; 1975 Nov; 14(23):5088-94. PubMed ID: 1238107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantiomeric specificity at the deacylation process of tryptic catalysis.
    Tanizawa K; Yamada H; Kanaoka Y
    Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of tryptic enzymes based on enantiomeric specificity at the deacylation step.
    Yamada H; Tanizawa K; Kanaoka Y
    FEBS Lett; 1988 Jan; 227(2):195-7. PubMed ID: 2962887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin.
    Fiedler F
    Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of trypsin and related enzymes toward amidinophenyl esters.
    Nozawa M; Tanizawa K; Kanaoka Y; Moriya H
    J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the Cys191-Cys220 disulfide bond in trypsin: new targets for engineering substrate specificity.
    Wang EC; Hung SH; Cahoon M; Hedstrom L
    Protein Eng; 1997 Apr; 10(4):405-11. PubMed ID: 9194165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters.
    Tanizawa K; Kanaoka Y
    J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins.
    Sekizaki H; Itoh K; Murakami M; Toyota E; Tanizawa K
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):337-46. PubMed ID: 11126764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific spin-labeling at trypsin active site. Application of 'inverse substrate' to the structural analysis of the active site.
    Fujioka T; Tanizawa K; Kanaoka Y
    Biochim Biophys Acta; 1980 Mar; 612(1):205-12. PubMed ID: 6244849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable acyl-derivatives of trypsin-like enzymes. Preparation, kinetics, application.
    Stürzebecher J
    Biomed Biochim Acta; 1986; 45(11-12):1405-10. PubMed ID: 3579870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme.
    Tanizawa K; Kasaba Y; Kanaoka Y
    J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse substrates: novel synthetic substrates for trypsin and related enzymes.
    Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis.
    Whiting AK; Peticolas WL
    Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of hydrolysis of amide and anilide substrates of p-guanidino-L-phenylalanine by bovine and porcine trypsins.
    Tsunematsu H; Nishimura H; Mizusaki K; Makisumi S
    J Biochem; 1985 Feb; 97(2):617-23. PubMed ID: 4008471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of trypsin with active-site-directed enzyme-activated nitrosoamide substrates.
    White EH; Chen Y
    Biochemistry; 1995 Nov; 34(46):15123-33. PubMed ID: 7578126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Streptomyces griseus and bovine trypsin by active site analysis using fluorescent acyl groups.
    Tanizawa K; Nakano M; Kanaoka Y
    Biochim Biophys Acta; 1987 Jul; 913(3):292-9. PubMed ID: 3109486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of hydrolysis of some extended N-aminoacyl-l-lysine methyl esters.
    Green GD; Tomalin G
    Eur J Biochem; 1976 Sep; 68(1):131-7. PubMed ID: 986943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.