BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7460939)

  • 1. Microtubule-associated-protein MAP1 is not implicated in the polymerization of microtubules.
    Villasante A; de la Torre J; Manso-Martínez R; Avila J
    Eur J Biochem; 1980 Dec; 112(3):611-6. PubMed ID: 7460939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAP2 competes with MAP1 for binding to microtubules.
    Kuznetsov SA; Rodionov VI; Gelfand VI; Rosenblat VA
    Biochem Biophys Res Commun; 1984 Feb; 119(1):173-8. PubMed ID: 6704120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphism of tubulin oligomers in the presence of microtubule-associated proteins. Implications in microtubule assembly.
    Carlier MF; Simon C; Pantaloni D
    Biochemistry; 1984 Mar; 23(7):1582-90. PubMed ID: 6722111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of the in vitro polymerization of tubulin in the presence of the microtubule-associated proteins MAP2 and tau.
    Sandoval IV; Vandekerckhove JS
    J Biol Chem; 1981 Aug; 256(16):8795-800. PubMed ID: 7263687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purified native microtubule associated protein MAP1A: kinetics of microtubule assembly and MAP1A/tubulin stoichiometry.
    Pedrotti B; Islam K
    Biochemistry; 1994 Oct; 33(41):12463-70. PubMed ID: 7918469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-induced inactivation of microtubule formation in brain extracts. Presence of a calcium-dependent protease acting on polymerization-stimulating microtubule-associated proteins.
    Sandoval IV; Weber K
    Eur J Biochem; 1978 Dec; 92(2):463-70. PubMed ID: 33047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin.
    Hugdahl JD; Bokros CL; Hanesworth VR; Aalund GR; Morejohn LC
    Plant Cell; 1993 Sep; 5(9):1063-80. PubMed ID: 8104575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of the high-molecular-weight microtubule-associated protein 2 (MAP2) into microtubules at steady state in vitro.
    Manso-Martínez R; Villasante A; Avila J
    Eur J Biochem; 1980 Apr; 105(2):307-13. PubMed ID: 7379788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deficient nucleation during co-polymerization of mammalian MAP2 and tobacco tubulin.
    Hugdahl JD; Morejohn LC
    Biochem Mol Biol Int; 1994 Sep; 34(2):375-84. PubMed ID: 7849649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphonate buffers affect the recovery of microtubule-associated proteins MAP1 and MAP2: evidence that MAP1A promotes microtubule assembly.
    Pedrotti B; Soffientini A; Islam K
    Cell Motil Cytoskeleton; 1993; 25(3):234-42. PubMed ID: 8221901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of high molecular weight microtubule-associated proteins (MAP1 and MAP2) in a HeLa microtubule-organizing centre.
    Mascardo RN; Sherline P; Weatherbee J
    Cytobios; 1982; 35(138):113-27. PubMed ID: 6761077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 72-kDa microtubule-associated protein from porcine brain.
    Takeuchi M; Hisanaga S; Umeyama T; Hirokawa N
    J Neurochem; 1992 Apr; 58(4):1510-6. PubMed ID: 1548484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation states of microtubule-associated protein 2 (MAP2) determine the regulatory role of MAP2 in microtubule dynamics.
    Itoh TJ; Hisanaga S; Hosoi T; Kishimoto T; Hotani H
    Biochemistry; 1997 Oct; 36(41):12574-82. PubMed ID: 9376363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential association of the different brain microtubule proteins in different in vitro assembly conditions.
    Díez JC; de la Torre J; Avila J
    Biochim Biophys Acta; 1985 Jan; 838(1):32-8. PubMed ID: 3917690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of chick brain MAP2-tubulin microtubule protein. Characterization of the protein and the MAP2-dependent addition of tubulin dimers.
    Burns RG
    Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):231-8. PubMed ID: 1854335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. I. Biochemical characterization, effects on microtubule polymerization in vitro, and microtubule polymerization and organization in vivo.
    Wehland J; Willingham MC; Sandoval IV
    J Cell Biol; 1983 Nov; 97(5 Pt 1):1467-75. PubMed ID: 6415068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Binding of MAP1 protein to microtubules: the formation of "arms" and competition with MAP2 protein].
    Kuznetsov SA; Rodionov VI; Gel'fand VI; Rozenblat VA
    Dokl Akad Nauk SSSR; 1983; 270(5):1243-6. PubMed ID: 6884194
    [No Abstract]   [Full Text] [Related]  

  • 18. [High molecular weight nuclear matrix phosphoprotein as an analog of the MAP1 protein from brain microtubules associated with DNA in a Mg- dependent manner].
    Abaimova TIa; Nadezhdina ES
    Dokl Akad Nauk; 1992; 324(2):430-5. PubMed ID: 1451633
    [No Abstract]   [Full Text] [Related]  

  • 19. Age-related increase in a cathepsin D like protease that degrades brain microtubule-associated proteins.
    Matus A; Green GD
    Biochemistry; 1987 Dec; 26(25):8083-6. PubMed ID: 3327517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau.
    Drechsel DN; Hyman AA; Cobb MH; Kirschner MW
    Mol Biol Cell; 1992 Oct; 3(10):1141-54. PubMed ID: 1421571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.