These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7461064)

  • 41. Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels.
    Sillito AM
    J Physiol; 1979 Apr; 289():33-53. PubMed ID: 458666
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional organization of neurons in cat striate cortex: variations in preferred orientation and orientation selectivity with receptive-field type, ocular dominance, and location in visual-field map.
    Payne BR; Berman N
    J Neurophysiol; 1983 Apr; 49(4):1051-72. PubMed ID: 6854357
    [No Abstract]   [Full Text] [Related]  

  • 43. The physiological effects of monocular deprivation and their reversal in the monkey's visual cortex.
    Blakemore C; Garey LJ; Vital-Durand F
    J Physiol; 1978 Oct; 283():223-62. PubMed ID: 102764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation.
    Shatz CJ; Stryker MP
    J Physiol; 1978 Aug; 281():267-83. PubMed ID: 702379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lack of binocularity in cells of area 19 of cat visual cortex following monocular deprivation.
    Rapaport DH; Dreher B; Rowe MH
    Brain Res; 1982 Aug; 246(2):319-24. PubMed ID: 7127101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of GABAergic inhibition in the cortical effects of monocular deprivation.
    Sillito AM; Kemp JA; Blakemore C
    Nature; 1981 May; 291(5813):318-20. PubMed ID: 7231550
    [No Abstract]   [Full Text] [Related]  

  • 47. Ocular dominance in striate cortex is altered by neonatal section of the posterior corpus callosum in the cat.
    Elberger AJ
    Exp Brain Res; 1981; 41(3-4):280-91. PubMed ID: 7215489
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity.
    Wilson JR; Sherman SM
    J Neurophysiol; 1976 May; 39(3):512-33. PubMed ID: 948006
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Brief periods of monocular deprivation in kittens: effects of delay prior to physiological study.
    Freeman RD; Olson C
    J Neurophysiol; 1982 Feb; 47(2):139-50. PubMed ID: 7062093
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distinct X- and Y-streams in the cat visual cortex revealed by bicuculline application.
    Tanaka K
    Brain Res; 1983 Apr; 265(1):143-7. PubMed ID: 6850316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of prior visual experience on cortical recovery from the effects of unilateral eyelid suture in kittens.
    Blasdel GG; Pettigrew JD
    J Physiol; 1978 Jan; 274():601-19. PubMed ID: 625011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neural correlates of motion after-effects in cat striate cortical neurones: interocular transfer.
    Hammond P; Mouat GS
    Exp Brain Res; 1988; 72(1):21-8. PubMed ID: 3169191
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties.
    Mioche L; Singer W
    J Neurophysiol; 1989 Jul; 62(1):185-97. PubMed ID: 2754471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex.
    Mower GD; Berry D; Burchfiel JL; Duffy FH
    Brain Res; 1981 Sep; 220(2):255-67. PubMed ID: 7284755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning.
    Frégnac Y; Shulz DE
    J Neurobiol; 1999 Oct; 41(1):69-82. PubMed ID: 10504194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial analysis of ocular dominance patterns in monocularly deprived cats.
    Schmidt KE; Stephan M; Singer W; Löwel S
    Cereb Cortex; 2002 Aug; 12(8):783-96. PubMed ID: 12122027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recovery from monocular deprivation in the monkey. I. Reversal of physiological effects in the visual cortex.
    Blakemore C; Vital-Durand F; Garey LJ
    Proc R Soc Lond B Biol Sci; 1981 Nov; 213(1193):399-423. PubMed ID: 6119688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Blockade of serotonin-2C receptors by mesulergine reduces ocular dominance plasticity in kitten visual cortex.
    Wang Y; Gu Q; Cynader MS
    Exp Brain Res; 1997 Apr; 114(2):321-8. PubMed ID: 9166921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reversal of the physiological effects of monocular deprivation in adult dark-reared cats.
    Ramachandran VS; Kupperman B
    Brain Res; 1986 Mar; 367(1-2):309-13. PubMed ID: 3697705
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bicuculline enhances a negative component and diminishes a positive component of the visual evoked cortical potential in the cat.
    Zemon V; Kaplan E; Ratliff F
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7476-8. PubMed ID: 6938987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.