BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 7462203)

  • 1. Interactions of derivatives of guanidinophenylglycine and guanidinophenylalanine with trypsin and related enzymes.
    Tsunematsu H; Makisumi S
    J Biochem; 1980 Dec; 88(6):1773-83. PubMed ID: 7462203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin.
    Hatanaka Y; Tsunematsu H; Mizusaki K; Makisumi S
    Biochim Biophys Acta; 1985 Dec; 832(3):274-9. PubMed ID: 3935172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of phenylthiazolones of p-guanidinophenylalanine and arginine by trypsin and related enzymes.
    Tsunematsu H; Hatanaka Y; Sugahara Y; Makisumi S
    J Biochem; 1983 Oct; 94(4):1119-25. PubMed ID: 6361008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of hydrolysis of Na-benzoyl-p-guanidino-L-phenylalanine p-nitroanilide by trypsin.
    Tsunematsu H; Imamura T; Makisumi S
    J Biochem; 1983 Jul; 94(1):123-8. PubMed ID: 6619104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new beta-naphthylamide substrate of p-guanidino-L-phenylalanine for trypsin and related enzymes.
    Tsunematsu H; Ando K; Hatanaka Y; Mizusaki K; Isobe R; Makisumi S
    J Biochem; 1985 Dec; 98(6):1597-602. PubMed ID: 3912388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of hydrolysis of amide and anilide substrates of p-guanidino-L-phenylalanine by bovine and porcine trypsins.
    Tsunematsu H; Nishimura H; Mizusaki K; Makisumi S
    J Biochem; 1985 Feb; 97(2):617-23. PubMed ID: 4008471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and the stereoselective enzymatic hydrolysis of flurbiprofen-basic amino acid ethyl esters.
    Tsunematsu H; Yoshida S; Horie K; Yamamoto M
    J Drug Target; 1995; 2(6):517-25. PubMed ID: 7773614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic characterization of rat tissue kallikrein using N alpha-substituted arginine 4-nitroanilides and N alpha-benzoyl-L-arginine ethyl ester as substrates.
    Sousa MO; Rodrigues CV; Pena HB; Alvarenga MG; Machado-Coelho GL; Santoro MM; Juliano MA; Juliano L; Figueiredo AF
    Braz J Med Biol Res; 1996 Mar; 29(3):327-34. PubMed ID: 8736125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of alpha-N-(p-toluenesulphonyl)-p-guanidino-L-phenylalanine methyl ester with thrombin and trypsin.
    Klausner YS; Rigbi M; Ticho T; De Jong PJ; Neginsky EJ; Rinott Y
    Biochem J; 1978 Jan; 169(1):157-67. PubMed ID: 629742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Synthesis of omega-carboxyacyl-L-phenylalanine-aryl esters and their use as substrates for cathepsin G and chymotrypsin].
    Schnabel E
    Hoppe Seylers Z Physiol Chem; 1981 Jun; 362(6):655-64. PubMed ID: 7275004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme.
    Atassi MZ; Manshouri T
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8282-6. PubMed ID: 8367494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin.
    Fiedler F
    Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The substrate specificity of proteinase B from baker's yeast.
    Kominami E; Hoffschulte H; Leuschel L; Maier K; Holzer H
    Biochim Biophys Acta; 1981 Sep; 661(1):136-41. PubMed ID: 7028121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the hydrolysis of N-benzoyl-L-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses.
    Wharton CW; Cornish-Bowden A; Brocklehurst K; Crook EM
    Biochem J; 1974 Aug; 141(2):365-381. PubMed ID: 4455211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of chymotrypsin bound covalently to dextran.
    Zlateva TP; Krysteva M; Balajthy Z; Elödi P
    Acta Biochim Biophys Hung; 1988; 23(3-4):225-30. PubMed ID: 2470217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity of honeydew melon protease D, a plant serine endopeptidase.
    Yonezawa H; Uchikoba T; Kaneda M
    Biosci Biotechnol Biochem; 1997 Aug; 61(8):1277-80. PubMed ID: 9301107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of hydrolysis of a new peptide substrate containing p-guanidino-L-phenylalanine by trypsin and thrombin.
    Tsunematsu H; Mizusaki K; Hatanaka Y; Kamahori M; Makisumi S
    Chem Pharm Bull (Tokyo); 1986 Mar; 34(3):1351-4. PubMed ID: 3731349
    [No Abstract]   [Full Text] [Related]  

  • 18. Analysis of proteases involved in phagocytic activity of macrophages through the use of various amino acid esters.
    Nihira S; Koyama J
    J Biochem; 1983 Aug; 94(2):565-73. PubMed ID: 6355080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and mechanism of catalysis by proteolytic enzymes. The kinetics of hydrolysis of esters of gamma-guanidino-L-alpha-toluene-p-sulphonamidobutyric acid by bovine trypsin and thrombin.
    Baird JB; Curragh EF; Elmore DT
    Biochem J; 1965 Sep; 96(3):733-8. PubMed ID: 5862413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin.
    Iijima K; Katada J; Yasuda E; Uno I; Hayashi Y
    J Med Chem; 1999 Jan; 42(2):312-23. PubMed ID: 9925737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.