These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7462981)

  • 21. Chloride cells and chloride exchange in the skin of a sea-water teleost, the shanny (Blennius pholis L.).
    Nonnotte G; Nonnotte L; Kirsch R
    Cell Tissue Res; 1979 Jul; 199(3):387-96. PubMed ID: 476806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active chloride transport by the skin of a marine teleost is stimulated by urotensin I and inhibited by urotensin II.
    Marshall WS; Bern HA
    Gen Comp Endocrinol; 1981 Apr; 43(4):484-91. PubMed ID: 6164598
    [No Abstract]   [Full Text] [Related]  

  • 23. Acid-base regulation in fishes: cellular and molecular mechanisms.
    Claiborne JB; Edwards SL; Morrison-Shetlar AI
    J Exp Zool; 2002 Aug; 293(3):302-19. PubMed ID: 12115903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon?
    Tresguerres M; Katoh F; Orr E; Parks SK; Goss GG
    Physiol Biochem Zool; 2006; 79(6):981-96. PubMed ID: 17041864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apical structures of "mitochondria-rich" alpha and beta cells in euryhaline fish gill: their behaviour in various living conditions.
    Pisam M; Le Moal C; Auperin B; Prunet P; Rambourg A
    Anat Rec; 1995 Jan; 241(1):13-24. PubMed ID: 7879919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructure of the presumed ion-transporting cells in the gills of ammocoete lampreys, Lampetra fluviatilis (L.) and Lampetra planeri (Bloch).
    Morris R; Pickering AD
    Cell Tissue Res; 1975 Nov; 163(3):327-41. PubMed ID: 1203951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active transport of Rb+ across skin of the teleost Gillichthys mirabilis.
    Marshall WS
    Am J Physiol; 1981 Nov; 241(5):F482-6. PubMed ID: 7304744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of mitochondria-rich cells in transepithelial sodium and chloride transport in amphibian skins.
    Dörge A; Nagel W; Beck FX; Rick R; Thurau K
    J Basic Clin Physiol Pharmacol; 1990; 1(1-4):339-48. PubMed ID: 2085524
    [No Abstract]   [Full Text] [Related]  

  • 29. Comparative studies of the development and differentiation of chloride cells in tilapine fish with different reproductive styles.
    Fishelson L; Bresler V
    J Morphol; 2002 Aug; 253(2):118-31. PubMed ID: 12112127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An electrogenic chloride pump in a zoological membrane.
    Gerencser GA; Purushotham KR; Meng HB
    J Exp Zool; 1996 Jul; 275(4):256-61. PubMed ID: 8759921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cl- absorption in European eel intestine and its regulation.
    Schettino T; Lionetto MG
    J Exp Zool A Comp Exp Biol; 2003 Nov; 300(1):63-8. PubMed ID: 14598387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of cAMP on porcine ciliary transepithelial short-circuit current, sodium transport, and chloride transport.
    Ni Y; Wu R; Xu W; Maecke H; Flammer J; Haefliger IO
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2065-74. PubMed ID: 16639017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Appearance of cuboidal cells in relation to salinity in gills of Fundulus heteroclitus, a species exhibiting branchial Na+ but not Cl- uptake in freshwater.
    Laurent P; Chevalier C; Wood CM
    Cell Tissue Res; 2006 Sep; 325(3):481-92. PubMed ID: 16639617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The reversibility of the respiratory inhibition in gills and the ultrastructural changes in chloride cells from the rotenone-poisoned marine teleost, Gadus callarias L.
    Oberg KE
    Exp Cell Res; 1967 Mar; 45(3):590-602. PubMed ID: 6022569
    [No Abstract]   [Full Text] [Related]  

  • 35. Chloride secretion by bovine ciliary epithelium: a model of aqueous humor formation.
    Do CW; To CH
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1853-60. PubMed ID: 10845609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intestinal anion exchange in marine fish osmoregulation.
    Grosell M
    J Exp Biol; 2006 Aug; 209(Pt 15):2813-27. PubMed ID: 16857865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Swelling-activated Cl- channels support Cl- secretion by bovine ciliary epithelium.
    Do CW; Peterson-Yantorno K; Civan MM
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2576-82. PubMed ID: 16723473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondria-rich cells and carbonic anhydrase content of toad skin epithelium.
    Katz U; Gabbay S
    Cell Tissue Res; 1988 Feb; 251(2):425-31. PubMed ID: 2449967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fish gill morphology: inside out.
    Wilson JM; Laurent P
    J Exp Zool; 2002 Aug; 293(3):192-213. PubMed ID: 12115897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification of mitochondria-rich cells in different ionic conditions: changes in cell morphology and cell number in the skin of Xenopus laevis.
    Ilic V; Brown D
    Anat Rec; 1980 Feb; 196(2):153-61. PubMed ID: 7416509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.