BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7463003)

  • 1. Differentiation of strains of yellow fever virus in gamma-irradiated mice.
    Fitzgeorge R; Bradish CJ
    J Gen Virol; 1980 Oct; 50(2):345-56. PubMed ID: 7463003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in vivo differentiation of strains of yellow fever virus in mice.
    Fitzgeorge R; Bradish CJ
    J Gen Virol; 1980 Jan; 46(1):1-13. PubMed ID: 6766176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibody-dependent enhancement of yellow fever and Japanese encephalitis virus neurovirulence.
    Gould EA; Buckley A
    J Gen Virol; 1989 Jun; 70 ( Pt 6)():1605-8. PubMed ID: 2543793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The responses of normal an athymic mice to infections by togaviruses: strain differentiation in active and adoptive immunization.
    Bradish CJ; Fitzgeorge R; Titmuss D
    J Gen Virol; 1980 Feb; 46(2):255-65. PubMed ID: 6966674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses.
    Brandriss MW; Schlesinger JJ; Walsh EE; Briselli M
    J Gen Virol; 1986 Feb; 67 ( Pt 2)():229-34. PubMed ID: 3944585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sensitivity to gamma-irradiation of the phases of the virus-host interaction: studies with strains of Semliki forest virus in mice.
    Bradish CJ; Titmuss D; Fitzgeorge R
    J Gen Virol; 1980 May; 48(1):39-51. PubMed ID: 7381435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of neurovirulence of different strains of yellow fever virus in mice.
    Barrett AD; Gould EA
    J Gen Virol; 1986 Apr; 67 ( Pt 4)():631-7. PubMed ID: 3958694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbovirus studies in Luanda, Angola. 1. Virological and serological studies during a yellow fever epidemic.
    Pinto MR; Filipe AR
    Bull World Health Organ; 1973; 49(1):31-5. PubMed ID: 4545154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymphocytes and yellow fever. I. Transient virus refractory state following vaccination of man with the 17-D strain.
    Wheelock EF; Toy ST; Stjernholm RL
    J Immunol; 1970 Nov; 105(5):1304-6. PubMed ID: 5496134
    [No Abstract]   [Full Text] [Related]  

  • 10. Protection of mice against yellow fever virus encephalitis by immunization with a vaccinia virus recombinant encoding the yellow fever virus non-structural proteins, NS1, NS2a and NS2b.
    Putnak JR; Schlesinger JJ
    J Gen Virol; 1990 Aug; 71 ( Pt 8)():1697-702. PubMed ID: 2144016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody-mediated early death in vivo after infection with yellow fever virus.
    Barrett AD; Gould EA
    J Gen Virol; 1986 Nov; 67 ( Pt 11)():2539-42. PubMed ID: 3783130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Randomized, double-blind, multicenter study of the immunogenicity and reactogenicity of 17DD and WHO 17D-213/77 yellow fever vaccines in children: implications for the Brazilian National Immunization Program.
    Collaborative Group for Studies with Yellow Fever Vaccine
    Vaccine; 2007 Apr; 25(16):3118-23. PubMed ID: 17316925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48.
    Schlesinger JJ; Brandriss MW; Walsh EE
    J Immunol; 1985 Oct; 135(4):2805-9. PubMed ID: 4031501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurovirulence tests of three 17D yellow fever vaccine strains.
    Minor PD
    Biologicals; 2011 May; 39(3):167-70. PubMed ID: 21536454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent and consecutive infection and immunisation with yellow fever and UGMP-359 viruses.
    David-West TS
    Arch Virol; 1975; 48(1):21-8. PubMed ID: 1147778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yellow fever virus 17D envelope and NS3 proteins are major targets of the antiviral T cell response in mice.
    van der Most RG; Harrington LE; Giuggio V; Mahar PL; Ahmed R
    Virology; 2002 Apr; 296(1):117-24. PubMed ID: 12036323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutralizing F(ab')2 fragments of protective monoclonal antibodies to yellow fever virus (YF) envelope protein fail to protect mice against lethal YF encephalitis.
    Schlesinger JJ; Chapman S
    J Gen Virol; 1995 Jan; 76 ( Pt 1)():217-20. PubMed ID: 7844536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutralizing (54K) and non-neutralizing (54K and 48K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice.
    Gould EA; Buckley A; Barrett AD; Cammack N
    J Gen Virol; 1986 Mar; 67 ( Pt 3)():591-5. PubMed ID: 3950582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the role of innate immunity in the mechanism of action of the live attenuated Yellow Fever Vaccine 17D.
    Querec TD; Pulendran B
    Adv Exp Med Biol; 2007; 590():43-53. PubMed ID: 17191376
    [No Abstract]   [Full Text] [Related]  

  • 20. Distinctive TLR7 signaling, type I IFN production, and attenuated innate and adaptive immune responses to yellow fever virus in a primate reservoir host.
    Mandl JN; Akondy R; Lawson B; Kozyr N; Staprans SI; Ahmed R; Feinberg MB
    J Immunol; 2011 Jun; 186(11):6406-16. PubMed ID: 21515797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.