These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 7464200)
1. Subclinical changes in brain morphology following cardiac operations as reflected by computed tomographic scans of the brain. Muraoka R; Yokota M; Aoshima M; Kyoku I; Nomoto S; Kobayashi A; Nakano H; Ueda K; Saito A; Hojo H J Thorac Cardiovasc Surg; 1981 Mar; 81(3):364-9. PubMed ID: 7464200 [TBL] [Abstract][Full Text] [Related]
2. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435 [TBL] [Abstract][Full Text] [Related]
3. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli. Nollert G; Nagashima M; Bucerius J; Shin'oka T; Jonas RA J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1166-71. PubMed ID: 10343268 [TBL] [Abstract][Full Text] [Related]
4. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. II. hypoxic versus free radical injury. Nollert G; Nagashima M; Bucerius J; Shin'oka T; Lidov HG; du Plessis A; Jonas RA J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1172-9. PubMed ID: 10343269 [TBL] [Abstract][Full Text] [Related]
5. Cerebral physiology in paediatric cardiopulmonary bypass. Pua HL; Bissonnette B Can J Anaesth; 1998 Oct; 45(10):960-78. PubMed ID: 9836033 [TBL] [Abstract][Full Text] [Related]
6. Duration of circulatory arrest does influence the psychological development of children after cardiac operation in early life. Wells FC; Coghill S; Caplan HL; Lincoln C J Thorac Cardiovasc Surg; 1983 Dec; 86(6):823-31. PubMed ID: 6645588 [TBL] [Abstract][Full Text] [Related]
7. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs. Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173 [TBL] [Abstract][Full Text] [Related]
8. A comparison of the effects on neuronal Golgi morphology, assessed with electron microscopy, of cardiopulmonary bypass, low-flow bypass, and circulatory arrest during profound hypothermia. Scheller MS; Branson PJ; Cornacchia LG; Alksne JF J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1396-404. PubMed ID: 1434722 [TBL] [Abstract][Full Text] [Related]
9. Comparison of bubble and membrane oxygenators in short and long perfusions. Clark RE; Beauchamp RA; Magrath RA; Brooks JD; Ferguson TB; Weldon CS J Thorac Cardiovasc Surg; 1979 Nov; 78(5):655-66. PubMed ID: 491720 [TBL] [Abstract][Full Text] [Related]
10. The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children. Greeley WJ; Ungerleider RM; Smith LR; Reves JG J Thorac Cardiovasc Surg; 1989 May; 97(5):737-45. PubMed ID: 2709864 [TBL] [Abstract][Full Text] [Related]
11. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205 [TBL] [Abstract][Full Text] [Related]
12. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. Newburger JW; Jonas RA; Wernovsky G; Wypij D; Hickey PR; Kuban KC; Farrell DM; Holmes GL; Helmers SL; Constantinou J; Carrazana E; Barlow JK; Walsh AZ; Lucius KC; Share JC; Wessel DL; Hanley FL; Mayer JE; Costaneda AR; Ware JH N Engl J Med; 1993 Oct; 329(15):1057-64. PubMed ID: 8371727 [TBL] [Abstract][Full Text] [Related]
13. The relationship between intelligence and duration of circulatory arrest with deep hypothermia. Oates RK; Simpson JM; Turnbull JA; Cartmill TB J Thorac Cardiovasc Surg; 1995 Sep; 110(3):786-92. PubMed ID: 7564447 [TBL] [Abstract][Full Text] [Related]
14. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. Svensson LG; Crawford ES; Hess KR; Coselli JS; Raskin S; Shenaq SA; Safi HJ J Thorac Cardiovasc Surg; 1993 Jul; 106(1):19-28; discussion 28-31. PubMed ID: 8321002 [TBL] [Abstract][Full Text] [Related]
15. Prolongation of the safe interval of hypothermic circulatory arrest: 90 minutes. Haneda K; Sands MP; Thomas R; Hessel EA; Dillard DH J Cardiovasc Surg (Torino); 1983; 24(1):15-21. PubMed ID: 6833347 [TBL] [Abstract][Full Text] [Related]
16. Reappraisal of cardiopulmonary bypass with deep hypothermia and circulatory arrest for complex neurosurgical operations. Baumgartner WA; Silverberg GD; Ream AK; Jamieson SW; Tarabek J; Reitz BA Surgery; 1983 Aug; 94(2):242-9. PubMed ID: 6879441 [TBL] [Abstract][Full Text] [Related]
17. Clinical comparison between membrane and bubble oxygenators in cardiopulmonary bypass. Fenchel G; Seybold-Epting W; Schmidt K; Stunkat R; Hoffmeister HE J Cardiovasc Surg (Torino); 1979; 20(4):419-22. PubMed ID: 479280 [TBL] [Abstract][Full Text] [Related]
18. Increased transcription factor expression and permeability of the blood brain barrier associated with cardiopulmonary bypass in lambs. Cavaglia M; Seshadri SG; Marchand JE; Ochocki CL; Mee RB; Bokesch PM Ann Thorac Surg; 2004 Oct; 78(4):1418-25. PubMed ID: 15464507 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs. Kim WG; Lim C; Moon HJ; Kim YJ Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081 [TBL] [Abstract][Full Text] [Related]