These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7464910)

  • 21. Possible depletion of a DNA repair enzyme in human lymphoma cells by subversive repair.
    Karran P
    Proc Natl Acad Sci U S A; 1985 Aug; 82(16):5285-9. PubMed ID: 3860861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. O6-Methylguanine removal by competent and incompetent human lymphoblastoid lines from the same male individual.
    Sklar RM; Strauss BS
    Cancer Res; 1983 Jul; 43(7):3316-20. PubMed ID: 6850639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytotoxicity, mutations and SCEs induced by methylating agents are reduced in CHO cells expressing an active mammalian O6-methylguanine-DNA methyltransferase gene.
    Bignami M; Terlizzese M; Zijno A; Calcagnile A; Frosina G; Abbondandolo A; Dogliotti E
    Carcinogenesis; 1987 Oct; 8(10):1417-21. PubMed ID: 3115613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excision of O6-methylguanine from DNA by human fibroblasts determined by a sensitive competition method.
    Teo IA; Karran P
    Carcinogenesis; 1982; 3(8):923-8. PubMed ID: 7127672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repair of O6-methylguanine in adapted Escherichia coli.
    Schendel PF; Robins PE
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6017-20. PubMed ID: 282622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-methyl-N'-nitro-N-nitrosoguanidine-resistant HeLa S3 cells still have little O6-methylguanine-DNA methyltransferase activity and are hypermutable by alkylating agents.
    Ishida R; Takahashi T
    Carcinogenesis; 1987 Aug; 8(8):1109-13. PubMed ID: 3608093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity.
    Cortellino S; Turner D; Masciullo V; Schepis F; Albino D; Daniel R; Skalka AM; Meropol NJ; Alberti C; Larue L; Bellacosa A
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15071-6. PubMed ID: 14614141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA mismatch repair mutants do not increase N-methyl-N'-nitro-N-nitrosoguanidine tolerance in O6-methylguanine DNA methyltransferase-deficient yeast cells.
    Xiao W; Rathgeber L; Fontanie T; Bawa S
    Carcinogenesis; 1995 Aug; 16(8):1933-9. PubMed ID: 7634424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced cell killing and mutagenesis by ethylnitrosourea in xeroderma pigmentosum cells.
    Simon L; Hazard RM; Maher VM; McCormick JJ
    Carcinogenesis; 1981; 2(6):567-70. PubMed ID: 7273335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transfection and expression of human O6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents.
    Kaina B; Fritz G; Mitra S; Coquerelle T
    Carcinogenesis; 1991 Oct; 12(10):1857-67. PubMed ID: 1657427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage.
    Payne A; Chu G
    Mutat Res; 1994 Oct; 310(1):89-102. PubMed ID: 7523888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical symptoms and DNA repair characteristics of xeroderma pigmentosum patients from Germany.
    Thielmann HW; Popanda O; Edler L; Jung EG
    Cancer Res; 1991 Jul; 51(13):3456-70. PubMed ID: 2054785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations in levels of 5'-adenyl dinucleotides following DNA damage in normal human fibroblasts and fibroblasts derived from patients with xeroderma pigmentosum.
    Baker JC; Ames BN
    Mutat Res; 1988 Jun; 208(2):87-93. PubMed ID: 2454402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of repair of O6-methyldeoxyguanosine and enhanced mutagenesis in rat-liver epithelial cells.
    Alvi NK; Foiles PG; Williams GM
    Mutat Res; 1990 Jun; 230(2):219-26. PubMed ID: 2374558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of the inactive C145A mutant human O6-alkylguanine-DNA alkyltransferase in E.coli increases cell killing and mutations by N-methyl-N'-nitro-N-nitrosoguanidine.
    Edara S; Kanugula S; Pegg AE
    Carcinogenesis; 1999 Jan; 20(1):103-8. PubMed ID: 9934856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. O6-methylguanine-DNA methyltransferase-defective human cell mutant: O6-methylguanine, DNA strand breaks and cytotoxicity.
    Kalamegham R; Warmels-Rodenhiser S; MacDonald H; Ebisuzaki K
    Carcinogenesis; 1988 Oct; 9(10):1749-53. PubMed ID: 3168154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UV stimulation of DNA-mediated transformation of human cells.
    van Duin M; Westerveld A; Hoeijmakers JH
    Mol Cell Biol; 1985 Apr; 5(4):734-41. PubMed ID: 3990693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA repair in xeroderma pigmentosum cells treated with combinations of ultraviolet radiation and N-acetoxy-2-acetylaminofluorene.
    Ahmed FE; Setlow RB
    Cancer Res; 1979 Feb; 39(2 Pt 1):471-9. PubMed ID: 761220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excision of N-acetoxy-2-acetylaminofluorene-induced DNA adducts from chromatin fractions of human fibroblasts.
    Kaneko M; Cerutti PA
    Cancer Res; 1980 Nov; 40(11):4313-9. PubMed ID: 7471068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between O6-alkylguanine-DNA alkyltransferase activity and N-methyl-N'-nitro-N-nitrosoguanidine-induced mutation, transformation, and cytotoxicity in C3H/10T1/2 cells expressing exogenous alkyltransferase genes.
    von Hofe E; Fairbairn L; Margison GP
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11199-203. PubMed ID: 1454799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.