These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7464982)

  • 1. Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain.
    Nomura Y; Schmidt-Glenewinkel T; Giacobini E
    Neurochem Res; 1980 Nov; 5(11):1163-73. PubMed ID: 7464982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain uptake of pipecolic acid, amino acids, amines following intracarotid injection in the mouse.
    Nishio H; Giacobini E
    Neurochem Res; 1981 Aug; 6(8):835-45. PubMed ID: 6796898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and metabolism of delta 1-piperidine-2-carboxylic acid by synaptosomes from rat cerebral cortex.
    Chang YF; Charles AK
    Biochim Biophys Acta; 1995 Aug; 1238(1):29-33. PubMed ID: 7654748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of synaptosomal and glial uptake of pipecolic acid and GABA in rat brain.
    Nomura Y; Okuma Y; Segawa T; Schmidt-Glenewinkel T; Giacobini E
    Neurochem Res; 1981 Apr; 6(4):391-400. PubMed ID: 7266747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iminoglycine transport system in synaptosomes and its interaction with enkephalins.
    Rhoads DE; Peterson NA; Raghupathy E
    Biochemistry; 1984 Jan; 23(1):117-21. PubMed ID: 6691962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of pipecolic acid in adult and developing mouse brain.
    Kim JS; Giacobini E
    Neurochem Res; 1985 Oct; 10(10):1405-15. PubMed ID: 4069310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of cadaverine and pipecolic acid in brain and other organs of the mouse.
    Nomura Y; Schmidt-Glenewinkel T; Giacobini E; Ortiz J
    J Neurosci Res; 1983; 9(3):279-89. PubMed ID: 6406679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood-brain barrier transport of L-pipecolic acid in various rat brain regions.
    Charles AK; Chang YF; Myslinski NR
    Neurochem Res; 1983 Sep; 8(9):1087-96. PubMed ID: 6633787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of pipecolic acid binding sites in mouse brain.
    Gutierrez MD; Giacobini E
    Neurochem Res; 1985 May; 10(5):691-702. PubMed ID: 4010875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of synaptosomal uptake of 3H-L-glutamate and 3H-GABA by hyperforin, a major constituent of St. John's Wort: the role of amiloride sensitive sodium conductive pathways.
    Wonnemann M; Singer A; Müller WE
    Neuropsychopharmacology; 2000 Aug; 23(2):188-97. PubMed ID: 10882845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High affinity proline uptake in rat brain synaptosomes.
    Hauptmann M; Wilson DF; Erecińska M
    FEBS Lett; 1983 Sep; 161(2):301-5. PubMed ID: 6137416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental studies of the uptake of choline, GABA and dopamine by crude synaptosomal preparations after in vivo or in vitro lead treatment.
    Ramsay PB; Krigman MR; Morell P
    Brain Res; 1980 Apr; 187(2):383-402. PubMed ID: 7370737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between sodium and high-affinity taurine uptake in hypothalamic crude P2 synaptosomal preparations.
    Hanretta AT; Lombardini JB
    Neurochem Res; 1987 Aug; 12(8):705-13. PubMed ID: 3627359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine transport into plasma-membrane vesicles derived from rat brain synaptosomes.
    Mayor F; Marvizón JG; Aragón MC; Gimenez C; Valdivieso F
    Biochem J; 1981 Sep; 198(3):535-41. PubMed ID: 7326021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake of gamma-aminobutyric acid and glycine by synaptosomes from postmortem human brain.
    Hardy JA; Barton A; Lofdahl E; Cheetham SC; Johnston GA; Dodd PR
    J Neurochem; 1986 Aug; 47(2):460-7. PubMed ID: 3734788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental and other characteristics of lysine uptake by rat brain synaptosomes.
    Hwang SM; Segal S
    Biochim Biophys Acta; 1979 Nov; 557(2):436-48. PubMed ID: 497192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating d-serine reuptake in the mouse CNS.
    Rutter AR; Fradley RL; Garrett EM; Chapman KL; Lawrence JM; Rosahl TW; Patel S
    Eur J Neurosci; 2007 Mar; 25(6):1757-66. PubMed ID: 17432963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes.
    Barros-Barbosa AR; Lobo MG; Ferreirinha F; Correia-de-Sá P; Cordeiro JM
    Neuroscience; 2015 Oct; 306():74-90. PubMed ID: 26299340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptosomal plasma membrane transport of excitatory sulphur amino acid transmitter candidates: kinetic characterisation and analysis of carrier specificity.
    Grieve A; Butcher SP; Griffiths R
    J Neurosci Res; 1992 May; 32(1):60-8. PubMed ID: 1352830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal sodium transport in synaptosomes from brain of uremic rats.
    Fraser CL; Sarnacki P; Arieff AI
    J Clin Invest; 1985 Jun; 75(6):2014-23. PubMed ID: 4008650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.