These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 7468167)

  • 1. Tensile fracture of cancellous bone.
    Carter DR; Schwab GH; Spengler DM
    Acta Orthop Scand; 1980 Oct; 51(5):733-41. PubMed ID: 7468167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensile and compressive properties of cancellous bone.
    Røhl L; Larsen E; Linde F; Odgaard A; Jørgensen J
    J Biomech; 1991; 24(12):1143-9. PubMed ID: 1769979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental study on the biomechanical properties of the cancellous bones of distal femur.
    Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y
    Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material properties of femoral cancellous bone in axial loading. Part I: Time independent properties.
    Rohlmann A; Zilch H; Bergmann G; Kölbel R
    Arch Orthop Trauma Surg (1978); 1980; 97(2):95-102. PubMed ID: 7458606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The point of view of the veterinary surgeon: bone and fracture.
    Autefage A
    Injury; 2000 Sep; 31 Suppl 3():C50-5. PubMed ID: 11052381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties and density of bone in a case of severe endemic fluorosis.
    Evans FG; Wood JL
    Acta Orthop Scand; 1976 Oct; 47(5):489-95. PubMed ID: 998183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cycle-dependent and time-dependent bone fracture with repeated loading.
    Carter DR; Caler WE
    J Biomech Eng; 1983 May; 105(2):166-70. PubMed ID: 6865359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain rate dependence of the mechanical properties of reindeer antler and the cumulative damage model of bone fracture.
    Currey JD
    J Biomech; 1989; 22(5):469-75. PubMed ID: 2777821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relations between tensile impact properties and microstructure of compact bone.
    Saha S; Hayes WC
    Calcif Tissue Res; 1977 Dec; 24(1):65-72. PubMed ID: 597746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical comparison of tension band- and interfragmentary screw fixation with a new implant in transverse patella fractures.
    Dargel J; Gick S; Mader K; Koebke J; Pennig D
    Injury; 2010 Feb; 41(2):156-60. PubMed ID: 19665707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensile testing of rodlike trabeculae excised from bovine femoral bone.
    Ryan SD; Williams JL
    J Biomech; 1989; 22(4):351-5. PubMed ID: 2745469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of damage and microcracking on the impact strength of bone.
    Reilly GC; Currey JD
    J Biomech; 2000 Mar; 33(3):337-43. PubMed ID: 10673117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension.
    Fyhrie DP; Vashishth D
    Bone; 2000 Feb; 26(2):169-73. PubMed ID: 10678412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture properties of growth plate cartilage compared to cortical and trabecular bone in ovine femora.
    Tschegg EK; Celarek A; Fischerauer SF; Stanzl-Tschegg S; Weinberg AM
    J Mech Behav Biomed Mater; 2012 Oct; 14():119-29. PubMed ID: 23022566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.