These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7469417)

  • 1. Synthesis of some cluster galactosides and their effect on the hepatic galactose-binding system.
    Kawaguchi K; Kuhlenschmidt M; Roseman S; Lee YC
    Arch Biochem Biophys; 1980 Dec; 205(2):388-95. PubMed ID: 7469417
    [No Abstract]   [Full Text] [Related]  

  • 2. The interaction of forskolin with the galactose-H+ transport protein (GalP) of Escherichia coli.
    Martin GE; Walmsley AR; Henderson PJ
    Biochem Soc Trans; 1994 Aug; 22(3):278S. PubMed ID: 7821537
    [No Abstract]   [Full Text] [Related]  

  • 3. The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli.
    Miller DM; Olson JS; Quiocho FA
    J Biol Chem; 1980 Mar; 255(6):2465-71. PubMed ID: 6987223
    [No Abstract]   [Full Text] [Related]  

  • 4. Purification of the galactose/H+ symport protein of Escherichia coli.
    Dent HC; Henderson PJ; Lucas VA
    Biochem Soc Trans; 1992 Aug; 20(3):251S. PubMed ID: 1426545
    [No Abstract]   [Full Text] [Related]  

  • 5. A histochemical study about the zonal distribution of the galactose-binding protein in rat liver.
    Hardonk MJ; Scholtens HB
    Histochemistry; 1980; 69(3):289-97. PubMed ID: 7440265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis of the galactose-H+ symporter, GalP, of Escherichia coli.
    Steel A; Cairns MT; Walmsley AR; Henderson PJ
    Biochem Soc Trans; 1994 Aug; 22(3):277S. PubMed ID: 7821536
    [No Abstract]   [Full Text] [Related]  

  • 7. Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli.
    Henderson PJ; Macpherson AJ
    Methods Enzymol; 1986; 125():387-429. PubMed ID: 3520228
    [No Abstract]   [Full Text] [Related]  

  • 8. Beta-D-Galactoside transport in Escherichia coli: Mr determination of the transport protein in organic solvent.
    König B; Sandermann H
    FEBS Lett; 1982 Oct; 147(1):31-4. PubMed ID: 6754450
    [No Abstract]   [Full Text] [Related]  

  • 9. Specific interaction of the Escherichia coli chaperone GroEL (60-KDA heat shock protein) with the liganded form of the galactose binding protein.
    Richarme G; el Yaagoubi A; de Crouy-Chanel A; Kohiyama M
    Biochem Mol Biol Int; 1994 Nov; 34(5):955-61. PubMed ID: 7703912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Export of periplasmic galactose-binding protein in Escherichia coli depends on the chaperone SecB.
    Powers EL; Randall LL
    J Bacteriol; 1995 Apr; 177(7):1906-7. PubMed ID: 7896722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein.
    Richarme G
    Biochim Biophys Acta; 1983 Oct; 748(1):99-108. PubMed ID: 6351927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pre-steady-state kinetics of conformational changes in sugar transporters.
    Walmsley AR; Martin GE; McDonald TP; Henderson PJ
    Biochem Soc Trans; 1994 Aug; 22(3):650-4. PubMed ID: 7821656
    [No Abstract]   [Full Text] [Related]  

  • 13. Differential uptake of D-galactosyl- and D-glucosyl-neoglycoproteins by isolated rat hepatocytes.
    Kawaguchi K; Kuhlenschmidt M; Roseman S; Lee YC
    J Biol Chem; 1981 Mar; 256(5):2230-4. PubMed ID: 7462236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis.
    Vyas NK; Vyas MN; Quiocho FA
    Nature; 1987 Jun 18-24; 327(6123):635-8. PubMed ID: 3600760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Reconstitution of high-affinity galactose transport of Salmonella typhimurium in proteoliposomes: energization by lipoamide and NAD or by the membrane potential; inhibition by ATP].
    Richarme G
    C R Acad Sci III; 1987; 305(3):55-8. PubMed ID: 3113676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of the binding protein-dependent galactose transport of Salmonella typhimurium in proteoliposomes.
    Richarme G; el Yaagoubi A; Kohiyama M
    Biochim Biophys Acta; 1992 Feb; 1104(1):201-6. PubMed ID: 1550848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of D-galactose-binding protein at 4.1 A resolution looks like L-arabinose-binding protein.
    Quiocho FA; Pflugrath JW
    J Biol Chem; 1980 Jul; 255(14):6559-51. PubMed ID: 6993475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liver uptake and hepato-biliary transfer of galactosylated proteins in rats are determined by the extent of galactosylation.
    Staud F; Nishikawa M; Takakura Y; Hashida M
    Biochim Biophys Acta; 1999 Apr; 1427(2):183-92. PubMed ID: 10216235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galactose- and maltose-stimulated lipoamide dehydrogenase activities related to the binding-protein-dependent transport of galactose and maltose in toluenized cells of Escherichia coli.
    Richarme G; Heine HG
    Eur J Biochem; 1986 Apr; 156(2):399-405. PubMed ID: 3084252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lectin-like molecules on the murine macrophage cell surface.
    Imamura T; Toyoshima S; Osawa T
    Biochim Biophys Acta; 1984 Nov; 805(3):235-44. PubMed ID: 6487661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.