These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7469481)

  • 1. Uptake, elimination, and metabolism of three phenols by fathead minnows.
    Call DJ; Brooke LT; Lu PY
    Arch Environ Contam Toxicol; 1980; 9(6):699-714. PubMed ID: 7469481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of mineralization of organic compounds at low concentrations in soil.
    Scow KM; Simkins S; Alexander M
    Appl Environ Microbiol; 1986 May; 51(5):1028-35. PubMed ID: 3729388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolism of phenol and substituted phenols in zebra fish.
    Kasokat T; Nagel R; Urich K
    Xenobiotica; 1987 Oct; 17(10):1215-21. PubMed ID: 3424868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of phenol, 2,4-dimethylphenol, 2,4-dichlorophenol, and pentachlorophenol on embryo, larval, and early-juvenile fathead minnows (Pimephales promelas).
    Holcombe GW; Phipps GL; Fiandt JT
    Arch Environ Contam Toxicol; 1982; 11(1):73-8. PubMed ID: 7073320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic biodegradation of phenolic compounds in digested sludge.
    Boyd SA; Shelton DR; Berry D; Tiedje JM
    Appl Environ Microbiol; 1983 Jul; 46(1):50-4. PubMed ID: 6614908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accumulation and disposition of benz(a)acridine in the fathead minnow, Pimephales promelas.
    Southworth GR; Keffer CC; Beauchamp JJ
    Arch Environ Contam Toxicol; 1981 Sep; 10(5):561-9. PubMed ID: 7305448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake, elimination, and biotransformation of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) by larvae of the aquatic midge Chironomus tentans.
    Kawatski JA; Bittner MA
    Toxicology; 1975 May; 4(2):183-94. PubMed ID: 1154422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation and transport of phenol, 2-nitrophenol, and 4-nitrophenol in plant cuticles.
    Shafer WE; Schönherr J
    Ecotoxicol Environ Saf; 1985 Oct; 10(2):239-52. PubMed ID: 4085383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of mineralization of phenols in lake water.
    Jones SH; Alexander M
    Appl Environ Microbiol; 1986 May; 51(5):891-7. PubMed ID: 3755316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of hydrolysis of the orthophosphate monoesters of phenol, p-nitrophenol, and glycerol by human prostatic acid phosphatase.
    NIGAM VN; DAVIDSON HM; FISHMAN WH
    J Biol Chem; 1959 Jun; 234(6):1550-4. PubMed ID: 13654415
    [No Abstract]   [Full Text] [Related]  

  • 11. Uptake, depuration, and biotransformation of anthracene and benzo[a]pyrene in bluegill sunfish.
    Spacie A; Landrum PF; Leversee GJ
    Ecotoxicol Environ Saf; 1983 Jun; 7(3):330-41. PubMed ID: 6307636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples.
    Zhong C; He M; Liao H; Chen B; Wang C; Hu B
    J Chromatogr A; 2016 Apr; 1441():8-15. PubMed ID: 26961915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excretion and metabolism of phenol, 4-nitrophenol and 2-methylphenol by the frogs Rana temporaria and Xenopus laevis.
    Görge G; Beyer J; Urich K
    Xenobiotica; 1987 Nov; 17(11):1293-8. PubMed ID: 3501639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Kaidoh T; Itagaki E
    J Biochem; 1991 Feb; 109(2):348-53. PubMed ID: 1864847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds: Kinetic modeling.
    Ng SL; Seng CE; Lim PE
    Chemosphere; 2010 Jan; 78(5):510-6. PubMed ID: 20035966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latent effects of early life stage exposure to triclosan on survival in fathead minnows, Pimephales promelas.
    Salierno JD; Lopes M; Rivera M
    J Environ Sci Health B; 2016 Oct; 51(10):695-702. PubMed ID: 27333258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biotransformation of [14C]phenol in some freshwater fish.
    Layiwola PJ; Linnecar DF
    Xenobiotica; 1981 Mar; 11(3):167-71. PubMed ID: 7293212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV photolysis for enhanced phenol biodegradation in the presence of 2,4,6-trichlorophenol (TCP).
    Song J; Wang W; Li R; Zhu J; Zhang Y; Liu R; Rittmann BE
    Biodegradation; 2016 Feb; 27(1):59-67. PubMed ID: 26747251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure.
    Sanchez I; Stüber F; Font J; Fortuny A; Fabregat A; Bengoa C
    Chemosphere; 2007 Jun; 68(2):338-44. PubMed ID: 17300830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicokinetics and biotransformation of p-nitrophenol in white sturgeon (Acipenser transmontanus).
    TenBrook PL; Kendall SM; Tjeerdema RS
    Ecotoxicol Environ Saf; 2006 Jul; 64(3):362-8. PubMed ID: 15949845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.