BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7470022)

  • 1. The elongation of exogenous fatty acids and the control of phospholipid acyl chain length in Micrococcus cryophilus.
    Sandercock SP; Russell NJ
    Biochem J; 1980 Jun; 188(3):585-92. PubMed ID: 7470022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elo1p-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae.
    Schneiter R; Tatzer V; Gogg G; Leitner E; Kohlwein SD
    J Bacteriol; 2000 Jul; 182(13):3655-60. PubMed ID: 10850979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The positional specificity of a desaturase in the psychrophilic bacterium Micrococcus cryophilus (ATCC 15174).
    Russell NJ
    Biochim Biophys Acta; 1978 Nov; 531(2):179-86. PubMed ID: 718969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turnover of phospholipid fatty acyl chains in cultured neuroblastoma cells: involvement of deacylation-reacylation and de novo synthesis in plasma membranes.
    Chakravarthy BR; Spence MW; Cook HW
    Biochim Biophys Acta; 1986 Dec; 879(3):264-77. PubMed ID: 3778920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some properties, including the substrate in vivo, of the delta 9-desaturase in Micrococcus cryophilus.
    Foot M; Jeffcoat R; Russell NJ
    Biochem J; 1983 Feb; 209(2):345-53. PubMed ID: 6847622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on thermal adaptation in Tetrahymena membrane lipids. Positional distribution of fatty acid in diacyl- and alkyl-acyl-phosphatidylcholines and -(2-aminoethyl)phosphonolipids from cells grown at different temperatures.
    Watanabe T; Fukushima H; Nozawa Y
    Biochim Biophys Acta; 1980 Oct; 620(1):133-41. PubMed ID: 7417476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA; Finnerty WR
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of growth temperature on the membrane lipid environment of the psychrophilic bacterium Micrococcus cryophilus.
    Foot M; Jeffcoat R; Barratt MD; Russell NJ
    Arch Biochem Biophys; 1983 Jul; 224(2):718-27. PubMed ID: 6307159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on tetrahymena membranes. Modification of surface membrane lipids by replacement of tetrahymanol by exogenous ergosterol in Tetrahymena pyriformis.
    Nozawa Y; Fukushima H; Iida H
    Biochim Biophys Acta; 1975 Oct; 406(2):248-63. PubMed ID: 811256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism for adaptive modification during cold acclimation of phospholipid acyl chain composition in Tetrahymena. I. Principal involvement of deacylation-reacylation.
    Kameyama Y; Yoshioka S; Nozawa Y
    Biochim Biophys Acta; 1984 Mar; 793(1):28-33. PubMed ID: 6704411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of exogenous fatty acids on growth, membrane fluidity, and phospholipid fatty acid composition in yeast.
    Esfahani M; Kucirka EM; Timmons FX; Tyagi S; Lord AE; Henry SA
    J Supramol Struct Cell Biochem; 1981; 15(2):119-28. PubMed ID: 6100953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.
    Yao J; Dodson VJ; Frank MW; Rock CO
    J Biol Chem; 2015 Sep; 290(36):22163-73. PubMed ID: 26195634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid cycling in human hepatoma cells and the effects of troglitazone.
    Lee WN; Lim S; Bassilian S; Bergner EA; Edmond J
    J Biol Chem; 1998 Aug; 273(33):20929-34. PubMed ID: 9694841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The differential inhibition by cerulenin of fatty acid synthesis and elongation in the psychrophilic bacterium Micrococcus cryophilus.
    Sandercock SP; Russell NJ
    Biochem Soc Trans; 1981 Feb; 9(1):60-1. PubMed ID: 7215667
    [No Abstract]   [Full Text] [Related]  

  • 15. Retention of acyl groups in LM cell fibroblasts with altered phospholipid composition.
    Schroeder F; Doi O
    Biochim Biophys Acta; 1978 Oct; 531(1):32-43. PubMed ID: 708748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of specific exogenous fatty acids into membrane lipids modulates protonophore resistance in Bacillus subtilis.
    Krulwich TA; Clejan S; Falk LH; Guffanti AA
    J Bacteriol; 1987 Oct; 169(10):4479-85. PubMed ID: 2820928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional differentiation and selective inactivation of multiple Saccharomyces cerevisiae genes involved in very-long-chain fatty acid synthesis.
    Rössler H; Rieck C; Delong T; Hoja U; Schweizer E
    Mol Genet Genomics; 2003 May; 269(2):290-8. PubMed ID: 12684876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of sulphite by Saccharomyces cerevisiae and Zygosaccharomyces bailii as affected by phospholipid fatty-acyl unsaturation and chain length.
    Pilkington BJ; Rose AH
    J Gen Microbiol; 1989 Sep; 135(9):2423-8. PubMed ID: 2697748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of endocytosis to altered fatty acyl composition of macrophage phospholipids.
    Mahoney EM; Hamill AL; Scott WA; Cohn ZA
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4895-9. PubMed ID: 270722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi.
    Byers DM
    J Bacteriol; 1989 Jan; 171(1):59-64. PubMed ID: 2492504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.