These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 7470495)
1. A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles. Moore AL; Bonner WD Biochim Biophys Acta; 1981 Jan; 634(1):117-28. PubMed ID: 7470495 [TBL] [Abstract][Full Text] [Related]
2. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles. Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139 [No Abstract] [Full Text] [Related]
3. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles. Seren S; Caporin G; Galiazzo F; Lippe G; Ferguson SJ; Sorgato MC Eur J Biochem; 1985 Oct; 152(2):373-9. PubMed ID: 2865136 [TBL] [Abstract][Full Text] [Related]
4. Measurement of the electrochemical proton gradient in submitochondrial particles. Berry EA; Hinkle PC J Biol Chem; 1983 Feb; 258(3):1474-86. PubMed ID: 6296098 [TBL] [Abstract][Full Text] [Related]
5. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential. Sorgato MC; Ferguson SJ; Kell DB; John P Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021 [TBL] [Abstract][Full Text] [Related]
6. Clarification of factors influencing the nature and magnitude of the protonmotive force in bovine heart submitochondrial particles. Branca D; Ferguson SJ; Sorgato MC Eur J Biochem; 1981 May; 116(2):341-6. PubMed ID: 7250131 [TBL] [Abstract][Full Text] [Related]
7. [Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system]. Novgorodov SA; Dragunova SF; Iaguzhinskiĭ LS Biofizika; 1982; 27(2):244-8. PubMed ID: 6462181 [TBL] [Abstract][Full Text] [Related]
8. Oxidative phosphorylation and the Pi-ATP exchange reaction of submitochondrial particles under the influence of organic solvents. Tuena de Gómez-Puyou M; Ayala G; Darszon A; Gómez-Puyou A J Biol Chem; 1984 Aug; 259(15):9472-8. PubMed ID: 6746656 [TBL] [Abstract][Full Text] [Related]
9. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5. de Jonge PC; Westerhoff HV Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021 [TBL] [Abstract][Full Text] [Related]
10. On the role of factor B and oligomycin on generation and discharge of the proton gradient. Hughes JB; Joshi S; Sanadi DR J Biol Chem; 1982 Jun; 257(12):6697-701. PubMed ID: 7085595 [TBL] [Abstract][Full Text] [Related]
11. Energy-dependent accumulation of the uncoupler picrate and proton flux in submitochondrial particles. Hanstein WG; Kiehl R Biochem Biophys Res Commun; 1981 Jun; 100(3):1118-25. PubMed ID: 7271794 [No Abstract] [Full Text] [Related]
12. Characteristics of the active transport of Ca2+ by submitochondrial vesicles. Niggli V; Mattenberger M; Gazzotti P Eur J Biochem; 1978 Sep; 89(2):361-6. PubMed ID: 710397 [TBL] [Abstract][Full Text] [Related]
19. Estimation of H+-translation stoicheiometry of mitochondrial ATPase by comparison of proton-motive forces with clamped phosphorylation potentials in submitochondrial particles. Sorgato MC; Galiazzo F; Panato L; Ferguson SJ Biochim Biophys Acta; 1982 Oct; 682(1):184-8. PubMed ID: 6215943 [TBL] [Abstract][Full Text] [Related]
20. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system. de Meis L; Grieco MA; Galina A FEBS Lett; 1992 Aug; 308(2):197-201. PubMed ID: 1499730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]