These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7470875)

  • 1. Polarographic assay of iontophoretically applied dopamine and low-noise unit recording using a multibarrel carbon fibre microelectrode.
    Millar J; Armstrong-James M; Kruk ZL
    Brain Res; 1981 Feb; 205(2):419-424. PubMed ID: 7470875
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantification of noradrenaline iontophoresis.
    Armstrong-James M; Millar J; Kruk ZL
    Nature; 1980 Nov; 288(5787):181-3. PubMed ID: 7432519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopaminergic modulation of cholinergic responses in rat medial prefrontal cortex: an electrophysiological study.
    Yang CR; Mogenson GJ
    Brain Res; 1990 Aug; 524(2):271-81. PubMed ID: 1981327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the concentration of 5-hydroxytryptamine ejected during iontophoresis using multibarrel carbon fibre microelectrodes.
    Kruk ZL; Armstrong-James M; Millar J
    Life Sci; 1980 Dec; 27(22):2093-8. PubMed ID: 7207009
    [No Abstract]   [Full Text] [Related]  

  • 5. Excitatory effect of iontophoretically applied dopamine on identified neurons of the rat subthalamic nucleus.
    Mintz I; Hammond C; Féger J
    Brain Res; 1986 Jun; 375(1):172-5. PubMed ID: 3719355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R
    Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon fibre microelectrodes.
    Armstrong-James M; Millar J
    J Neurosci Methods; 1979 Oct; 1(3):279-87. PubMed ID: 544972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iontophoretic studies of some trace amines in the mammalian CNS.
    Henwood RW; Boulton AA; Phillis JW
    Brain Res; 1979 Mar; 164():347-51. PubMed ID: 371754
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantitative ionophoresis of catecholamines using multibarrel carbon fibre microelectrodes.
    Armstrong-James M; Fox K; Kruk ZL; Millar J
    J Neurosci Methods; 1981 Dec; 4(4):385-406. PubMed ID: 7321578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of neocortical lamina V neuronal bursts by serotonin in urethane anaesthetized rats.
    George MJ; Mridha KA
    Int J Neurosci; 1989 Mar; 45(1-2):111-8. PubMed ID: 2714936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Role of dopamine and noradrenaline in altering direct cortical response under the action of fenamin? phenamine?].
    Il'iuchenok RIu; Martynov NN
    Farmakol Toksikol; 1974; 37(6):655-8. PubMed ID: 4464087
    [No Abstract]   [Full Text] [Related]  

  • 13. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine action in the nucleus accumbens.
    DeFrance JF; Sikes RW; Chronister RB
    J Neurophysiol; 1985 Dec; 54(6):1568-77. PubMed ID: 3003262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divalent cations and electrical properties of cortical cells.
    Kelly JS; Krnjević K; Somjen G
    J Neurobiol; 1969; 1(2):197-208. PubMed ID: 5407043
    [No Abstract]   [Full Text] [Related]  

  • 16. Fabrication and testing of microelectrodes for small-field cortical surface recordings.
    Kitzmiller J; Beversdorf D; Hansford D
    Biomed Microdevices; 2006 Mar; 8(1):81-5. PubMed ID: 16491335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seeing is believing? A study of signal distortion produced by commercial cortical microelectrode recording elements.
    Anderson WS
    Neurosurgery; 2013 Apr; 72(4):N14-5. PubMed ID: 23511828
    [No Abstract]   [Full Text] [Related]  

  • 18. Iontophoresis of enkephalins potentiates evoked field potentials in the in vitro rat hippocampus.
    Lee HK
    Chin J Physiol; 1978; 22(4):165-70. PubMed ID: 757786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of the macrogram and the microgram of the penicillin focus in turtle (Testudo) cerebral cortex. Localization of the capillary microelectrode tip with Pontamine Sky Blue 6BX.
    Strejcková A; Fischer J; Malík V
    Physiol Bohemoslov; 1979; 28(5):419-23. PubMed ID: 92796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological analysis of the adrenergic mechanism of the brain.
    Ilyutchenok RY; Martiynov NN
    Acta Physiol Pol; 1973; 24(1):71-85. PubMed ID: 4716350
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.