These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7471170)

  • 1. Similarities and differences in the structure of segmentally homologous neurons that control the hearts of the leech, Hirudo medicinalis.
    Shafer MR; Calabrese RL
    Cell Tissue Res; 1981; 214(1):137-53. PubMed ID: 7471170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic analysis of a rhythmic neural circuit in the leech Hirudo medicinalis.
    Peterson EL; Calabrese RL
    J Neurophysiol; 1982 Feb; 47(2):256-71. PubMed ID: 7062099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An oscillatory neuronal circuit generating a locomotory rhythm.
    Friesen WO; Poon M; Stent GS
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3734-8. PubMed ID: 1068483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of leech swimming activity by the cephalic ganglia.
    Brodfuehrer PD; Friesen WO
    J Neurobiol; 1986 Nov; 17(6):697-705. PubMed ID: 3794692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin in the leech central nervous system: anatomical correlates and behavioral effects.
    Lent CM; Zundel D; Freedman E; Groome JR
    J Comp Physiol A; 1991 Feb; 168(2):191-200. PubMed ID: 2046044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinactivation of the giant neuropil glial cells in the leech Hirudo medicinalis: effects on neuronal activity and synaptic transmission.
    Schmidt J; Deitmer JW
    J Neurophysiol; 1996 Nov; 76(5):2861-71. PubMed ID: 8930239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sprouting and connectivity of embryonic leech heart excitor (HE) motor neurons in the absence of their peripheral target.
    Jellies J; Kopp DM
    Invert Neurosci; 1995; 1(2):145-57. PubMed ID: 9372139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological changes in leech Retzius neurons after target contact during embryogenesis.
    Jellies J; Loer CM; Kristan WB
    J Neurosci; 1987 Sep; 7(9):2618-29. PubMed ID: 3625266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on neurones from the segmental ganglion of the leech, Hirudo medicinalis.
    Leake LD; Smith PA; Sunderland AJ; Walker RJ
    J Physiol; 1973 Jul; 232(2):63P-64P. PubMed ID: 4727095
    [No Abstract]   [Full Text] [Related]  

  • 12. Extension and retraction of axonal projections by some developing neurons in the leech depends upon the existence of neighboring homologues. I. The HA cells.
    Gao WQ; Macagno ER
    J Neurobiol; 1987 Jan; 18(1):43-59. PubMed ID: 3033145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the Frequency of Rhythmic Excitation of Retzius Cells during Thermal Stimulation of Leech Skin.
    Kazakova TA; Yusipovich AI; Pirutin SK; Maksimov GV
    Bull Exp Biol Med; 2020 Jan; 168(3):378-380. PubMed ID: 31938921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal correlation between neuronal tail ganglion activity and locomotion in the leech, Hirudo medicinalis.
    Baader AP; Bächtold D
    Invert Neurosci; 1997 Mar; 2(4):245-51. PubMed ID: 9460234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2983-91. PubMed ID: 17728387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between adjacent ganglia bring about the bilaterally alternating differentiation of RAS and CAS neurons in the leech nerve cord.
    Blair SS; Martindale MQ; Shankland M
    J Neurosci; 1990 Oct; 10(10):3183-93. PubMed ID: 2213140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreceptors and visual interneurons in the medicinal leech.
    Peterson EL
    J Neurobiol; 1984 Nov; 15(6):413-28. PubMed ID: 6520610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular recording, sensory field mapping, and culturing identified neurons in the leech, Hirudo medicinalis.
    Titlow J; Majeed ZR; Nicholls JG; Cooper RL
    J Vis Exp; 2013 Nov; (81):e50631. PubMed ID: 24299987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmental variation in the arborization of identified neurons in the leech central nervous system.
    Gillon JW; Wallace BG
    J Comp Neurol; 1984 Sep; 228(1):142-8. PubMed ID: 6480905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for proctolin-like substances in the central nervous system of the leech Hirudo medicinalis.
    Li C; Calabrese RL
    J Comp Neurol; 1985 Feb; 232(3):414-24. PubMed ID: 3882776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.