BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7471179)

  • 1. Development of blood-cerebrospinal fluid barrier to horseradish peroxidase in the avian choroidal epithelium.
    Wakai S; Hirokawa N
    Cell Tissue Res; 1981; 214(2):271-8. PubMed ID: 7471179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the blood-brain barrier to horseradish peroxidase in the chick embryo.
    Wakai S; Hirokawa N
    Cell Tissue Res; 1978 Dec; 195(2):195-203. PubMed ID: 737715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The barrier systems in the choroidal plexuses of the chick embryo studied by means of horseradish peroxidase.
    Bertossi M; Ribatti D; Nico B; Mancini L; Lozupone E; Roncali L
    J Submicrosc Cytol Pathol; 1988 Apr; 20(2):385-95. PubMed ID: 3395977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGA-HRP and the blood-brain and brain-blood barriers.
    Villegas JC; Broadwell RD
    J Neurocytol; 1993 Feb; 22(2):67-80. PubMed ID: 7680372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. I. Choroid plexus and the blood-cerebrospinal fluid barrier.
    Balin BJ; Broadwell RD
    J Neurocytol; 1988 Dec; 17(6):809-26. PubMed ID: 3230399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of tracer by the epiplexus cells via the choroid plexus epithelium following an intravenous or intraperitoneal injection of horseradish peroxidase in rats.
    Lu J; Kaur C; Ling EA
    J Anat; 1993 Dec; 183 ( Pt 3)(Pt 3):609-17. PubMed ID: 8300438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of horseradish peroxidase from CSF into the choroid plexus of the rat, with special reference to transepithelial transport.
    van Deurs B; Møller M; Amtorp O
    Cell Tissue Res; 1978 Feb; 187(2):215-34. PubMed ID: 630593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the effectiveness of the blood--CSF barrier in the fetal rat choroid plexus. A freeze-fracture and peroxidase diffusion study.
    Tauc M; Vignon X; Bouchaud C
    Tissue Cell; 1984; 16(1):65-74. PubMed ID: 6701893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development of blood-brain and blood-cerebrospinal fluid barrier (author's transl)].
    Wakai S
    No To Shinkei; 1981 Nov; 33(11):1077-92. PubMed ID: 7037021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental and ultrastructural study on the development of the avian choroid plexus.
    Wilting J; Christ B
    Cell Tissue Res; 1989 Mar; 255(3):487-94. PubMed ID: 2706656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of atrial natriuretic factor on permeability of the blood-cerebrospinal fluid barrier.
    Nag S
    Acta Neuropathol; 1991; 82(4):274-9. PubMed ID: 1836927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain barrier systems in the lamprey. II. Ultrastructure and permeability of the choroid plexus.
    Bundgaard M; van Deurs B
    Brain Res; 1982 May; 240(1):65-75. PubMed ID: 7093722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor.
    Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC
    Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight junctions in choroid plexus papillomas.
    Wakai S; Matsutani M; Mizutani H; Sano K
    Acta Neuropathol; 1979 Feb; 45(2):159-60. PubMed ID: 419939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The postnatal development of the junctional complexes of hamster Sertoli cells as revealed by HRP and freeze-fracture.
    Vignon X; Terquem A; Dadoune JP
    J Submicrosc Cytol; 1987 Apr; 19(2):303-9. PubMed ID: 3599128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier.
    Lazarevic I; Engelhardt B
    Fluids Barriers CNS; 2016 Jan; 13():2. PubMed ID: 26833402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of anti-HRP antibodies in the central nervous system of immunized rats after disruption of the blood brain barrier.
    Baloyannis SJ; Gonatas NK
    J Neuropathol Exp Neurol; 1979 Sep; 38(5):519-31. PubMed ID: 313978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of tight junctions between rat choroidal cells after osmotic opening induced by urea and sucrose.
    Bouchaud C; Bouvier D
    Tissue Cell; 1978; 10(2):331-42. PubMed ID: 675669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium.
    Strazielle N; Creidy R; Malcus C; Boucraut J; Ghersi-Egea JF
    PLoS One; 2016; 11(3):e0150945. PubMed ID: 26942913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey.
    Balin BJ; Broadwell RD; Salcman M; el-Kalliny M
    J Comp Neurol; 1986 Sep; 251(2):260-80. PubMed ID: 3782501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.