These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 7472355)

  • 1. Activity of neurons in the medial pontomedullary reticular formation during orienting movements in alert head-free cats.
    Isa T; Naito K
    J Neurophysiol; 1995 Jul; 74(1):73-95. PubMed ID: 7472355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity of neurons in Forel's field H during orienting head movements in alert head-free cats.
    Isa T; Naito K
    Exp Brain Res; 1994; 100(2):187-99. PubMed ID: 7813658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Firing characteristics of neurones in the superior colliculus and the pontomedullary reticular formation during orienting in unrestrained cats.
    Sasaki S; Naito K; Oka M
    Prog Brain Res; 1996; 112():99-116. PubMed ID: 8979823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orienting-related eye-neck neurons of the medial ponto-bulbar reticular formation do not participate in horizontal canal-dependent vestibular reflexes of alert cats.
    Kitama T; Grantyn A; Berthoz A
    Brain Res Bull; 1995; 38(4):337-47. PubMed ID: 8535856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of lesion of paramedian pontomedullary reticular formation by kainic acid injection on the visually triggered horizontal orienting movements in the cat.
    Isa T; Sasaki S
    Neurosci Lett; 1988 May; 87(3):233-9. PubMed ID: 3380346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus.
    Cowie RJ; Robinson DL
    J Neurophysiol; 1994 Dec; 72(6):2648-64. PubMed ID: 7897481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of lesion of pontomedullary reticular formation on visually triggered vertical and oblique head orienting movements in alert cats.
    Sasaki S; Isa T; Naito K
    Neurosci Lett; 1999 Apr; 265(1):13-6. PubMed ID: 10327194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges.
    Munoz DP; Guitton D; PĂ©lisson D
    J Neurophysiol; 1991 Nov; 66(5):1642-66. PubMed ID: 1765799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. I. Behavioral properties.
    Grantyn A; Berthoz A
    Exp Brain Res; 1987; 66(2):339-54. PubMed ID: 3595779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of slow orienting eye movements by tectoreticulospinal neurons in the cat: behavior, discharge patterns and underlying connections.
    Olivier E; Grantyn A; Chat M; Berthoz A
    Exp Brain Res; 1993; 93(3):435-49. PubMed ID: 8519334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projections of vertical eye movement-related and head rotation-related neurons in the medial mesodiencephalic junction to pontine reticular formation in cat.
    Shiraishi Y; Nakao S
    Neurosci Lett; 1994 Apr; 171(1-2):85-8. PubMed ID: 8084505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcortical contributions to head movements in macaques. II. Connections of a medial pontomedullary head-movement region.
    Cowie RJ; Smith MK; Robinson DL
    J Neurophysiol; 1994 Dec; 72(6):2665-82. PubMed ID: 7534824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques.
    McFarland JL; Fuchs AF
    J Neurophysiol; 1992 Jul; 68(1):319-32. PubMed ID: 1517825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy and physiology of saccadic long-lead burst neurons recorded in the alert squirrel monkey. II. Pontine neurons.
    Scudder CA; Moschovakis AK; Karabelas AB; Highstein SM
    J Neurophysiol; 1996 Jul; 76(1):353-70. PubMed ID: 8836230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pontomedullary reticular projections into the region of the ascending medial longitudinal fasciculus in cat.
    Remmel RS; Pola J; Skinner RD
    Exp Brain Res; 1978 May; 32(1):31-7. PubMed ID: 658186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of medullary reticulospinal neurons to sinusoidal rotation of neck in the decerebrate cat.
    Srivastava UC; Manzoni D; Pompeiano O; Stampacchia G
    Neuroscience; 1984 Feb; 11(2):473-86. PubMed ID: 6717800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discharge properties of medullary reticulospinal neurons during postural changes induced by intrapontine injections of carbachol, atropine and serotonin, and their functional linkages to hindlimb motoneurons in cats.
    Takakusaki K; Shimoda N; Matsuyama K; Mori S
    Exp Brain Res; 1994; 99(3):361-74. PubMed ID: 7957716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Electrophysiological experiment on neuronal pathway controlling horizontal eye-head coordination in the cat].
    Mori K
    Nippon Ganka Gakkai Zasshi; 1992 Aug; 96(8):993-9. PubMed ID: 1519517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discharge patterns of neurons in the medial pontobulbar reticular formation during fictive mastication in the rabbit.
    Westberg KG; Scott G; Olsson KA; Lund JP
    Eur J Neurosci; 2001 Nov; 14(10):1709-18. PubMed ID: 11860465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.