BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 7472372)

  • 1. Diverse neuronal populations mediate local circuit excitation in area CA3 of developing hippocampus.
    Smith KL; Szarowski DH; Turner JN; Swann JW
    J Neurophysiol; 1995 Aug; 74(2):650-72. PubMed ID: 7472372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
    Lamsa K; Palva JM; Ruusuvuori E; Kaila K; Taira T
    J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism.
    Menendez de la Prida L; Sanchez-Andres JV
    Neuroscience; 2000; 97(2):227-41. PubMed ID: 10799755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex.
    Chagnac-Amitai Y; Connors BW
    J Neurophysiol; 1989 Nov; 62(5):1149-62. PubMed ID: 2585046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical properties of fast spiking cells that initiate synchronized population discharges in immature hippocampus.
    Cesare CM; Smith KL; Rice FL; Swann JW
    Neuroscience; 1996 Nov; 75(1):83-97. PubMed ID: 8923525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus.
    McLean HA; Caillard O; Khazipov R; Ben-Ari Y; Gaiarsa JL
    J Neurophysiol; 1996 Aug; 76(2):1036-46. PubMed ID: 8871218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization of area CA3 hippocampal pyramidal cells and non-granule cells of the dentate gyrus in bicuculline-treated rat hippocampal slices.
    Scharfman HE
    Neuroscience; 1994 Mar; 59(2):245-57. PubMed ID: 8008190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices.
    Morin F; Beaulieu C; Lacaille JC
    J Neurophysiol; 1996 Jul; 76(1):1-16. PubMed ID: 8836204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic properties and evoked responses of guinea pig subicular neurons in vitro.
    Stewart M; Wong RK
    J Neurophysiol; 1993 Jul; 70(1):232-45. PubMed ID: 8395577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
    Hochman DW; Schwartzkroin PA
    J Neurophysiol; 2000 Jan; 83(1):406-17. PubMed ID: 10634883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local circuit abnormalities in chronically epileptic rats after intrahippocampal tetanus toxin injection in infancy.
    Smith KL; Lee CL; Swann JW
    J Neurophysiol; 1998 Jan; 79(1):106-16. PubMed ID: 9425181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the synchronous activity induced by 4-aminopyridine in the CA3 subfield of juvenile rat hippocampus.
    Avoli M; Psarropoulou C; Tancredi V; Fueta Y
    J Neurophysiol; 1993 Sep; 70(3):1018-29. PubMed ID: 7901344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells.
    Scharfman HE
    J Neurophysiol; 1994 Nov; 72(5):2167-80. PubMed ID: 7884451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic connectivity of distinct hilar interneuron subpopulations.
    Forti M; Michelson HB
    J Neurophysiol; 1998 Jun; 79(6):3229-37. PubMed ID: 9636121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized excitatory synaptic interactions mediate the sustained depolarization of electrographic seizures in developing hippocampus.
    Swann JW; Smith KL; Brady RJ
    J Neurosci; 1993 Nov; 13(11):4680-9. PubMed ID: 7901349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy.
    Jensen MS; Yaari Y
    J Neurophysiol; 1997 Mar; 77(3):1224-33. PubMed ID: 9084592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus.
    Buhl EH; Han ZS; Lörinczi Z; Stezhka VV; Karnup SV; Somogyi P
    J Neurophysiol; 1994 Apr; 71(4):1289-307. PubMed ID: 8035215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Both synaptic and intrinsic mechanisms underlie the different properties of population bursts in the hippocampal CA3 area of immature versus adult rats.
    Shao LR; Dudek FE
    J Physiol; 2009 Dec; 587(Pt 24):5907-23. PubMed ID: 19884320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained potential shifts and paroxysmal discharges in hippocampal formation.
    Somjen GG; Aitken PG; Giacchino JL; McNamara JO
    J Neurophysiol; 1985 Apr; 53(4):1079-97. PubMed ID: 3998793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.