These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 7472441)

  • 1. The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons.
    Maeda E; Robinson HP; Kawana A
    J Neurosci; 1995 Oct; 15(10):6834-45. PubMed ID: 7472441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of parallel activity elicited by propagating bursts in developing networks of rat cortical neurones.
    Maeda E; Kuroda Y; Robinson HP; Kawana A
    Eur J Neurosci; 1998 Feb; 10(2):488-96. PubMed ID: 9749711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extremely rich repertoire of bursting patterns during the development of cortical cultures.
    Wagenaar DA; Pine J; Potter SM
    BMC Neurosci; 2006 Feb; 7():11. PubMed ID: 16464257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic synchronized bursting and intracellular calcium transients elicited by low magnesium in cultured cortical neurons.
    Robinson HP; Kawahara M; Jimbo Y; Torimitsu K; Kuroda Y; Kawana A
    J Neurophysiol; 1993 Oct; 70(4):1606-16. PubMed ID: 8283217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic bursting of cultured cortical neurons in low magnesium: cellular and network mechanisms.
    Robinson HP; Torimitsu K; Jimbo Y; Kuroda Y; Kawana A
    Jpn J Physiol; 1993; 43 Suppl 1():S125-30. PubMed ID: 8271484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex.
    Chagnac-Amitai Y; Connors BW
    J Neurophysiol; 1989 Nov; 62(5):1149-62. PubMed ID: 2585046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation triggers endogenous activity patterns in cultured cortical networks.
    Pasquale V; Martinoia S; Chiappalone M
    Sci Rep; 2017 Aug; 7(1):9080. PubMed ID: 28831071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):804-10. PubMed ID: 8258447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms controlling bursting activity induced by disinhibition in spinal cord networks.
    Darbon P; Scicluna L; Tscherter A; Streit J
    Eur J Neurosci; 2002 Feb; 15(4):671-83. PubMed ID: 11886448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays.
    Ito D; Tamate H; Nagayama M; Uchida T; Kudoh SN; Gohara K
    Neuroscience; 2010 Nov; 171(1):50-61. PubMed ID: 20800660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons.
    Iida S; Shimba K; Sakai K; Kotani K; Jimbo Y
    Biochem Biophys Res Commun; 2018 Jun; 501(1):152-157. PubMed ID: 29723524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous synchronous synaptic calcium transients in cultured cortical neurons.
    Murphy TH; Blatter LA; Wier WG; Baraban JM
    J Neurosci; 1992 Dec; 12(12):4834-45. PubMed ID: 1361198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity.
    Canepari M; Bove M; Maeda E; Cappello M; Kawana A
    Biol Cybern; 1997 Aug; 77(2):153-62. PubMed ID: 9323864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1297-304. PubMed ID: 9805828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.
    Li Y; Zhou W; Li X; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Jun; 22(12):2976-82. PubMed ID: 17240134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xenon-induced inhibition of synchronized bursts in a rat cortical neuronal network.
    Uchida T; Suzuki S; Hirano Y; Ito D; Nagayama M; Gohara K
    Neuroscience; 2012 Jul; 214():149-58. PubMed ID: 22531374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of spontaneous synchronized burst in cultured neuronal networks based on multi-electrode arrays.
    Chen C; Chen L; Lin Y; Zeng S; Luo Q
    Biosystems; 2006 Aug; 85(2):137-43. PubMed ID: 16533555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
    Baruchi I; Volman V; Raichman N; Shein M; Ben-Jacob E
    Eur J Neurosci; 2008 Nov; 28(9):1825-35. PubMed ID: 18973597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.