These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 7472761)
1. Frozen storage increases the ultimate compressive load of porcine vertebrae. Callaghan JP; McGill SM J Orthop Res; 1995 Sep; 13(5):809-12. PubMed ID: 7472761 [TBL] [Abstract][Full Text] [Related]
2. Effects of anterior shear displacement rate on the structural properties of the porcine cervical spine. Gallagher KM; Howarth SJ; Callaghan JP J Biomech Eng; 2010 Sep; 132(9):091004. PubMed ID: 20815638 [TBL] [Abstract][Full Text] [Related]
3. Compressive force magnitude and intervertebral joint flexion/extension angle influence shear failure force magnitude in the porcine cervical spine. Howarth SJ; Callaghan JP J Biomech; 2012 Feb; 45(3):484-90. PubMed ID: 22196209 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties and failure mechanics of the spine under posterior shear load: observations from a porcine model. Yingling VR; McGill SM J Spinal Disord; 1999 Dec; 12(6):501-8. PubMed ID: 10598993 [TBL] [Abstract][Full Text] [Related]
6. Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture. Gardner-Morse MG; Stokes IA J Orthop Res; 2003 May; 21(3):547-52. PubMed ID: 12706030 [TBL] [Abstract][Full Text] [Related]
7. The porcine cervical spine as a model of the human lumbar spine: an anatomical, geometric, and functional comparison. Yingling VR; Callaghan JP; McGill SM J Spinal Disord; 1999 Oct; 12(5):415-23. PubMed ID: 10549707 [TBL] [Abstract][Full Text] [Related]
8. An in vitro study on the effects of freezing, spine segment, repeat measurement, and individual cord properties on cord interstitial pressure. Bassi M; Jarzem PF; Steibel M; Barriga P; Ouellet J; Reindl R Spine (Phila Pa 1976); 2009 Feb; 34(4):351-5. PubMed ID: 19214093 [TBL] [Abstract][Full Text] [Related]
9. [A biomechanical study on cervical spinal posture and prior loading history affecting spinal compressive strength]. Ma X; Li QL; Fan YG Zhonghua Wai Ke Za Zhi; 2004 Nov; 42(21):1322-4. PubMed ID: 15634435 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical comparison of adjacent segmental motion after ventral cervical fixation with varying angles of lordosis. Hwang SH; Kayanja M; Milks RA; Benzel EC Spine J; 2007; 7(2):216-21. PubMed ID: 17321972 [TBL] [Abstract][Full Text] [Related]
11. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration. Baranto A; Ekström L; Holm S; Hellström M; Hansson HA; Swärd L Clin Biomech (Bristol); 2005 Dec; 20(10):1046-54. PubMed ID: 16102879 [TBL] [Abstract][Full Text] [Related]
12. The influence of posture and loading on interfacet spacing: an investigation using magnetic resonance imaging on porcine spinal units. Drake JD; Dobson H; Callaghan JP Spine (Phila Pa 1976); 2008 Sep; 33(20):E728-34. PubMed ID: 18794747 [TBL] [Abstract][Full Text] [Related]
13. Motion compensation associated with single-level cervical fusion: where does the lost motion go? Schwab JS; Diangelo DJ; Foley KT Spine (Phila Pa 1976); 2006 Oct; 31(21):2439-48. PubMed ID: 17023853 [TBL] [Abstract][Full Text] [Related]
14. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model. Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN Spine J; 2005; 5(1):64-70. PubMed ID: 15653086 [TBL] [Abstract][Full Text] [Related]
15. Alteration of load sharing of anterior cervical implants with change in cervical sagittal alignment. Wang M; Gourab K; McGrady LM; Rao RD Med Eng Phys; 2008 Jul; 30(6):768-73. PubMed ID: 18037331 [TBL] [Abstract][Full Text] [Related]
16. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model. Drake JD; Aultman CD; McGill SM; Callaghan JP Clin Biomech (Bristol); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646 [TBL] [Abstract][Full Text] [Related]
17. Effect of displacement rate on the tensile mechanics of pediatric cervical functional spinal units. Nuckley DJ; Hertsted SM; Eck MP; Ching RP J Biomech; 2005 Nov; 38(11):2266-75. PubMed ID: 16154414 [TBL] [Abstract][Full Text] [Related]
18. Neural space and biomechanical integrity of the developing cervical spine in compression. Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458 [TBL] [Abstract][Full Text] [Related]
19. The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude. Parkinson RJ; Callaghan JP Clin Biomech (Bristol); 2009 Feb; 24(2):148-54. PubMed ID: 19121880 [TBL] [Abstract][Full Text] [Related]
20. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament. McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]