These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7472882)

  • 81. Efficacy of indigenous entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae), from Rio Grande do Sul Brazil, against Anastrephafraterculus (Wied.) (Diptera: Tephritidae) in peach orchards.
    Barbosa-Negrisoli CR; Garcia MS; Dolinski C; Negrisoli AS; Bernardi D; Nava DE
    J Invertebr Pathol; 2009 Sep; 102(1):6-13. PubMed ID: 19460384
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Development and population dynamics of Steinernema yirgalemense (Rhabditida: Steinernematidae) and growth characteristics of its associated Xenorhabdus indica symbiont in liquid culture.
    Ferreira T; Addison MF; Malan AP
    J Helminthol; 2016 May; 90(3):364-71. PubMed ID: 26156314
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Ammonia concentration at emergence and its effects on the recovery of different species of entomopathogenic nematodes.
    San-Blas E; Pirela D; García D; Portillo E
    Exp Parasitol; 2014 Sep; 144():1-5. PubMed ID: 24880156
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phospholipids and their fatty acids in infective juveniles of entomopathogenic steinernematid nematodes.
    Patel MN; Wright DJ
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Nov; 118(3):649-57. PubMed ID: 9467876
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Activity of
    Castruita-Esparza G; Bueno-Pallero FÁ; Blanco-Pérez R; Dionísio L; Aquino-Bolaños T; Campos-Herrera R
    J Nematol; 2020; 52():1-12. PubMed ID: 32722903
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of Soil Texture on the Distribution and Infectivity of Neoaplectana glaseri (Nematoda: Steinernematidae).
    Georgis R; Poinar GO
    J Nematol; 1983 Jul; 15(3):329-32. PubMed ID: 19295812
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fatty acid composition of neutral lipid energy reserves in infective juveniles of entomopathogenic nematodes.
    Patel MN; Wright DJ
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Oct; 118(2):341-8. PubMed ID: 9440227
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Ecology of anti-microbials produced by bacterial associates of Steinernema carpocapsae and Heterorhabditis bacteriophora.
    Jarosz J
    Parasitology; 1996 Jun; 112 ( Pt 6)():545-52. PubMed ID: 8684829
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Phased infectivity in Heterorhabditis megidis: the effects of infection density in the parental host and filial generation.
    Ryder JJ; Griffin CT
    Int J Parasitol; 2003 Sep; 33(10):1013-8. PubMed ID: 13129522
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Steinernema feltiae (DD-136) and S. glaseri: Persistence in Soil and Bark Compost and Their Influence on Native Nematodes.
    Ishibashi N; Kondo E
    J Nematol; 1986 Jul; 18(3):310-6. PubMed ID: 19294183
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Interactions between the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae) and the saprobic fungus Fusarium oxysporum (Ascomycota: Hypocreales).
    Navarro PD; McMullen JG; Stock SP
    J Invertebr Pathol; 2014 Jan; 115():41-7. PubMed ID: 24211424
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Storage temperature and duration affect Steinernema scarabaei dispersal and attraction, virulence, and infectivity to a white grub host.
    Koppenhöfer AM; Ebssa L; Fuzy EM
    J Invertebr Pathol; 2013 Feb; 112(2):129-37. PubMed ID: 23201455
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The behaviour of the nematode, Steinernema feltiae (Nematoda: Steinernematidae) in sand contaminated with the industrial pollutant chromium VI.
    Boyle S; Kakouli-Duarte T
    Ecotoxicology; 2018 Jul; 27(5):590-604. PubMed ID: 29663097
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Responses of sericotropin to toxic and pathogenic challenges: possible role in defense of the wax moth Galleria mellonella.
    Shaik HA; Mishra A; Sehadová H; Kodrík D
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Jan; 227():108633. PubMed ID: 31644954
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Touch-stimulation increases host-seeking behavior in
    Baiocchi T; Braun L; Dillman AR
    J Nematol; 2019; 51():1-5. PubMed ID: 31814369
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Host seeking parasitic nematodes use specific odors to assess host resources.
    Baiocchi T; Lee G; Choe DH; Dillman AR
    Sci Rep; 2017 Jul; 7(1):6270. PubMed ID: 28740104
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: Implications for their natural distribution in Swiss agricultural soils.
    Campos-Herrera R; Půža V; Jaffuel G; Blanco-Pérez R; Čepulytė-Rakauskienė R; Turlings TCJ
    J Invertebr Pathol; 2015 Nov; 132():216-227. PubMed ID: 26519008
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Heterorhabditis spp. and Steinernema (= Neoaplectana) spp.: temperature, and aspects of behavior and infectivity.
    Molyneux AS
    Exp Parasitol; 1986 Oct; 62(2):169-80. PubMed ID: 3743713
    [TBL] [Abstract][Full Text] [Related]  

  • 99. [Improved methods for the mass breeding of greater wax moth larvae (Galleria mellonella L.)].
    Hanschke R; Groth U
    Z Versuchstierkd; 1979; 21(4):205-8. PubMed ID: 516927
    [No Abstract]   [Full Text] [Related]  

  • 100. The suppressive effect of bacterial-feeding nematodes on hemocyte spreading of Galleria mellonella.
    Ono M; Hayakawa Y; Hama Y; Yoshiga T
    Microb Pathog; 2021 Apr; 153():104742. PubMed ID: 33460746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.